Mathematical Biosciences and Engineering (MBE)

Competitive exclusion in an infection-age structured vector-host epidemic model
Pages: 901 - 931, Issue 4, August 2017

doi:10.3934/mbe.2017048      Abstract        References        Full text (541.2K)           Related Articles

Yanxia Dang - Department of Public Education, Zhumadian Vocational and Technical College, Zhumadian 463000, China (email)
Zhipeng Qiu - Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China (email)
Xuezhi Li - Department of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000, China (email)

1 F. Brauer, Z. S. Shuai and P. V. D. Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Enger., 10 (2013), 1335-1349.       
2 H. J. Bremermann and H. R. Thieme, A competitive exclusion principle for pathogen virulence, J. Math. Biol, 27 (1989), 179-190.       
3 L. M. Cai, M. Martcheva and X. Z. Li, Competitive exclusion in a vector-host epidemic model with distributed delay, J. Biol. Dynamics, 7 (2013), 47-67.       
4 Y. Dang, Z. Qiu, X. Li and M. Martcheva, Global dynamics of a vector-host epidemic model with age of infection, submitted, 2015.
5 L. Esteva, A. B. Gumel and C. Vargas-de Leon, Qualitative study of transmission dynamics of drug-resistant malaria, Math. Comput. Modelling, 50 (2009), 611-630.       
6 Z. Feng and J. X. Velasco-Hernandez, Competitive exclusion in a vector host model for the dengue fever, J. Math. Biol, 35 (1997), 523-544.       
7 S. M. Garba and A. B. Gumel, Effect of cross-immunity on the transmission dynamics of two srains of dengue, J. Comput. Math, 87 (2010), 2361-2384.       
8 J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, 1988.       
9 W. O. Kermack and A. G. McKendrick, in Contributions to the Mathematical Theory of Epidemics, Royal Society Lond, 115 (1927), 700-721.
10 A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Royal Society Lond B, 268 (2001), 985-993.
11 A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics, Theor. Popul. Biol., 60 (2001), 59-71.
12 P. Magal, C. C. McCluskey and G.Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.       
13 M. Martcheva and X. Z. Li, Competitive exclusion in an infection-age structured model with environmental transmission, J. Math. Anal. Appl, 408 (2013), 225-246.       
14 M. Martcheva and H. R. Thieme, Progression age enhanced backward bifurcation in an epidemic model with super-infection, J. Math. Biol, 46 (2003), 385-424.       
15 M. Martcheva, M. Iannelli and X. Z. Li, Subthreshold coexistence of strains: The impact of vaccination and mutation, Math. Biosci. Eng., 4 (2007), 287-317.       
16 D. L. Qian, X. Z. Li and M. Ghosh, Coexistence of the strains induced by mutation, Int. J. Biomath., 5 (2012), 1260016, 25 pp.       
17 Z. P. Qiu, Q. K. Kong, X. Z. Li and M. M. Martcheva, The vector host epidemic model with multiple strains in a patchy environment, J. Math. Anal. Appl., 405 (2013), 12-36.       
18 H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics if HIV/AIDs?, SIAM J. Appl. Math., 53 (1993), 1447-1479.       
19 H. R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosci, 166 (2000), 173-201.       
20 J. X. Yang, Z. P. Qiu and X. Z. Li, Global stability of an age-structured cholera model, Math. Biosci. Enger., 11 (2014), 641-665.       
21 K. Yosida, Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1968.       

Go to top