`a`
Mathematical Biosciences and Engineering (MBE)
 

A chaotic bursting-spiking transition in a pancreatic beta-cells system: Observation of an interior glucose-induced crisis
Pages: 821 - 842, Issue 4, August 2017

doi:10.3934/mbe.2017045      Abstract        References        Full text (1661.1K)           Related Articles

Jorge Duarte - Instituto Superior de Engenharia de Lisboa - ISEL, Department of Mathematics, Rua Conselheiro Emídio Navarro 1, 1949-014 Lisboa, Portugal (email)
Cristina Januário - Instituto Superior de Engenharia de Lisboa - ISEL, Department of Mathematics, Rua Conselheiro Emídio Navarro 1, 1949-014 Lisboa, Portugal (email)
Nuno Martins - Center for Mathematical Analysis, Geometry and Dynamical Systems, Mathematics Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal (email)

1 J. Aguirre, E. Mosekilde and M. A. F. Sanjuán, Analysis of the noise-induced bursting-spiking transition in a pancreatic $\beta $-cell model, Pysical Review E, 69 (2004), 041910, 16pp.       
2 I. Atwater, C. M. Dawson, A. Scott, G. Eddlestone and E. Rojas, The Nature of the Oscillatory Behaviour in Electrical Activity from Pancreatic Beta-cell, Georg Thieme, New York, 1980.
3 C. A. S. Batista, A. M. Batista, J. A. C. de Pontes, R. L. Viana and S. R. Lopes, Chaotic phase synchronization in scale-free networks of bursting neurons, Phys. Rev. E, 76 (2007), 016218, 10pp.       
4 C. A. S. Batista, E. L. Lameu, A. M. Batista, S. R. Lopes, T. Pereira, G. Zamora-López, J. Kurths and R. L. Viana. Phase synchronization of bursting neurons in clustered small-world networks, Phys. Rev. E, 86 (2012), 016211.
5 R. Bertram and A. Sherman, Dynamical complexity and temporal plasticity in pancreatic beta cells, J. Biosci., 25 (2000), 197-209.
6 T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cel, Biophys. J., 42 (1983), 181-190.
7 T. R. Chay, Chaos in a three-variable model of an excitable cell, Physica D, 16 (1984), 233-242.
8 L. O. Chua, M. Komuro and T. Matsumoto, The double scroll family, IEEE Trans. Circuits Syst., 32 (1985), 797-818.       
9 B. Deng, A mathematical model that mimics the bursting oscillations in pancreatic $\beta $-cells, Math. Biosciences, 119 (1994), 241-250.       
10 B. Deng, Glucose-induced period-doubling cascade in the electrical activity of pancreatic $\beta $-cells, J. Math. Biol., 38 (1999), 21-78.       
11 J. Duarte, C. Januário and N. Martins, Topological entropy and the controlled effect of glucose in the electrical activity of pancreatic beta-cells, Physica D, 238 (2009), 2129-2137.       
12 J. Duarte, C. Januário and N. Martins, Explicit series solution for a glucose-induced electrical activity model of pancreatic cells, Chaos, Solitons & Fractals, 76 (2015), 1-9.       
13 J. Duarte, C. Januário, C. Rodrigues and J. Sardanyés, Topological complexity and predictability in the dynamics of a tumor growth model with Shilnikov's chaos, Int. J Bifurcation Chaos, 23 (2013), 1350124, 12pp.       
14 H. Fallah, Symmetric fold / super-Hopf bursting, chaos and mixed-mode oscillations in Pernarowski model, Int. J Bifurcation Chaos, 26 (2016), 1630022, 14pp.       
15 Y.-S. Fan and T. R. Chay, Crisis Transitions in excitable cell models, Chaos, Solitons & Fractals, 3 (1993), 603-615.
16 Y.-S. Fan and T. R. Chay, Crisis and topological entropy, Physical Review E, 51 (1995), 1012-1019.
17 L. E. Fridlyand, N. Tamarina and L. H. Philipson, Bursting and calcium oscillations in pancreatic beta cells: Specific pacemakers, Am J Physiol Endocrinol Metab., 299 (2010), E517-E532.
18 J. M. González-Miranda, Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model, Chaos, 13 (2003), 845.
19 J. M. González-Miranda, Complex bifurcations structures in the Hindmarsh-Rose neuron model, Int. J Bifurcation Chaos, 17 (2007), 3071-3083.       
20 J. M. González-Miranda, Nonlinear dynamics of the membrane potential of a bursting pacemaker cell, Chaos, 22 (2012), 013123.
21 J. M. González-Miranda, Pacemaker dynamics in the full Morris-Lecar model, Commun. Nonlinear Sci Numer Simulat, 19 (2014), 3229-3241.       
22 H.-G. Gu, B. Jia and G.-R. Chen, Experimental evidence of a chaotic region in a neural pacemaker, Physics Letters A , 377 (2013), 718-720.
23 H. Gu, B. Pan and G. Chen, Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models, Nonlinear Dyn., 78 (2014), 391-407.       
24 S. Jalil, I. Belykh and A. Shilnikov. Spikes matter for phase-locked bursting in inhibitory neurons, Phys. Rev. E, 85 (2012), 036214.
25 A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.       
26 J. P. Lampreia and J. S. Ramos, Symbolic dynamics of bimodal maps, Portugal. Math., 54 (1997), 1-18.       
27 S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press, Chapman and Hall, Boca Raton, FL, 2004.       
28 S. J. Liao and Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Stud. Appl. Math., 119 (2007), 297-354.       
29 S. Liao, Advances in the Homotopy Analysis Method, World Scientific Publishing Co, 2014.       
30 A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, Springer-Verlag, New York, 1992.       
31 R. Markovic, A. Stozer, M. Gosak, J. Dolensek and M. Marhl, Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns, Scientific Reports, 5 (2015), 7845.
32 T. Matsumoto, T. L. O. Chua and M. Komuro, The double scroll family, IEEE Trans. Circuits Syst., 32 (1985), 797-818.       
33 J. Milnor and W. Thurston, On iterated maps of the interval, Lect. Notes in Math., 1342 (1988), 465-563.       
34 M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63.       
35 S. E. Newhouse, D. Ruelle and F. Takens, Occurrence of strange Axiom A attractors near quasiperiodic flows on $T^m$ , $m\geq 3$, Commun. Math. Phys., 64 (1978), 35-40.       
36 E. Ott, Chaos in Dynamical Systems, Cambridge University Press, Cmabridge, UK, 2002.       
37 T. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, 1989.       
38 M. G. Pederson, E. Mosekilde, K. S. Polonsky and D. S. Luciani, Complex Patterns of Metabolic and $Ca^{2+}$ entrainment in pancreatic islets by oscillatory glucose, Biophysical Journal, 105 (2013), 29-39.
39 K. Ramasubramanian and M. S. Sriram, A Comparative study of computation of Lyapunov spectra with different algorithms, Physica D, 139 (2000), 72-86.       
40 J. Rinzel, Ordinary and Partial Differential Equations, Springer, New York, 1985.
41 G. A. Rutter and D. J. Hodson, Minireview: Intraislet regulation of insulin secretion in humans, Molecular Endocrinology, 27 (2013), 1984-1995.
42 A. Sherman, P. Carroll, R. M. Santos and I. Atwater, Glucose Dose Response of Pancreatic $\beta $-cells: Experimental and Theoretical Results, Transitions in Biological Systems, Eds Pienum, New York, 1990.
43 A. Stozer, M. Gosak, J. Dolensek, M. Perc, M. Marhl and M. S. Rupnik, Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices, PLoS Comput. Biol., 9 (2013), e1002923.
44 A. Stozer, M. Gosak, J. Dolensek, M. Perc, M. Marhl and M. S. Rupnik, Functional connectinity in islets of Langerhans from mouse pancreas tissue slices, PLOS Comp. Biol., 9 (2013), e1002923.
45 J. Wang, S. Liu and X. Liu, Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic $\beta$-cells, Chaos, Solitons & Fractals, 68 (2014), 65-71.
46 J. Wang, S. Liu and X. Liu, Bifurcation and firing patterns of the pancreatic $\beta $-cell, Int. J Bifurcation Chaos, 9 (2015), 1530024, 11pp.       

Go to top