Journal of Modern Dynamics (JMD)

On spectra of Koopman, groupoid and quasi-regular representations
Pages: 99 - 123, Volume 11, 2017

doi:10.3934/jmd.2017005      Abstract        References        Full text (282.7K)           Related Articles

Artem Dudko - Department of Mathematics, University of Toronto, Room 6290, 40 St. George Street, Toronto, ON M5S 2E4, Canada (email)
Rostislav Grigorchuk - Department of Mathematics, MS 3368, Texas A&M University, College Station, TX 77843-3368, United States (email)

1 S. Adams, G. Elliot and T. Giordano, Amenable actions of groups, Trans. Amer. Math. Soc., 344 (1994), 803-822.       
2 C. Anantharaman-Delaroche, On spectral characterization of amenability, Israel Journal of Mathematics, 137 (2003), 1-33.       
3 U. Bader and R. Muchnik, Boundary unitary representations - irreducibility and rigidity, Journal of Modern Dynamics, 5 (2011), 49-69.       
4 L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. im. V.A. Steklova, 231 (2000), 5-45; Proc. Steklov Inst. Math., 231 (2000), 1-41.       
5 L. Bartholdi, R. I. Grigorchuk and Z. Šunić, Branch groups, in Handbook of Algebra, Vol. 3, Elsevier/North-Holland, Amsterdam, 2003, 989-1112.       
6 M. E. B. Bekka and M. Cowling, Some irreducible unitary representations of $G(K)$ for a simple algebraic group $G$ over an algebraic number field $K$, Math. Z., 241 (2002), 731-741.       
7 B. Bekka, P. de la Harpe and A. Valette, Kazhdan Property (T), Cambridge University Press, 2008.       
8 O. Brattelli and W. Robinson, Operator Algebras and Quantum Statistical Mechanics. $C^*$- and $W^*$-Algebras. Symmetry Groups. Decomposition of States, second edition, Texts and Monographs in Physics, Springer-Verlag, New York, 1987.       
9 R. V. Chacon and N. A. Friedman, Approximation and invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 3 (1965), 286-295.       
10 T. Chow, A spectral theory for direct integrals of operators, Math. Ann., 188 (1970), 285-303.       
11 M. Cowling and T. Steger, The irreducibility of restrictions of unitary representations to lattices, J. Reine Angew. Math., 420 (1991), 85-98.       
12 J. Dixmier, Les C$^*$-algèbres et Leurs Représentations, Gauthier-Villars, 1969.       
13 A. Dudko and R. Grigorchuk, On diagonal actions of branch groups and the corresponding characters, arXiv:1412.5476.
14 A. Dudko and R. Grigorchuk, On irreducibility and disjointness of Koopman and quasi-regular representations of weakly branch groups, Modern Theory of Dynamical Systems: A Tribute to Dmitry Victorovich Anosov, AMS Cont. Math. Ser., (2016), to appear.
15 A. Dudko and K. Medynets, On characters of inductive limits of symmetric groups, Journal of Functional Analysis, 264 (2013), 1565-1598.       
16 J. Feldman and C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc., 234 (1977), 289-324.       
17 J. Feldman and C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc., 234 (1977), 325-359.       
18 A. Figá-Talamanca and M. A. Picardello, Harmonic Analysis on Free Groups, Lecture Notes in Pure and Applied Mathematics, Vol. 87, Marcel Dekker Inc., New York, 1983.       
19 A. Figá-Talamanca and T. Steger, Harmonic analysis for anisotropic random walks on homogeneous trees, Mem. Amer. Math. Soc., 110 (1994), xii+68pp.       
20 E. Glasner, Ergodic Theory via Joinings, Math. Surv. and Mon., {101}, Amer. Math. Soc., 2003.       
21 R. I. Grigorchuk, Burnside's problem on periodic groups, Funkts. Anal. Prilozh., 14 (1980), 53-54; Funct. Anal. Appl., 14 (1980), 41-43.       
22 R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.       
23 R. I. Grigorchuk, Degrees of growth of p-groups and torsion-free groups, (Russian) Mat. Sb. (N.S.), 126 (1985), 194-214.       
24 R. I. Grigorchuk, Just infinite branch groups, in New Horizons in Pro-p Groups, Prog. Math., 184, Birkhäuser, Boston, MA, 2000, 121-179.       
25 R. I. Grigorchuk, Some topics in the dynamics of group actions on rooted trees, Proceedings of the Steklov Institute of Mathematics, 273 (2011), 64-175.       
26 R. I. Grigorchuk, D. Lenz and T. Smirnova-Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order, arXiv:1412.6822.
27 R. I. Grigorchuk and V. Nekrashevich, Amenable actions of non-amenable groups, J. of Math. Sci., 140 (2007), 391-397.       
28 R. Grigorchuk, V. Nekrashevich and Z. Šunić, From self-similar groups to self-similar sets and spectra, Fractal Geometry and Stochastics V, series Progress in Probability, 70 (2015), 175-207.
29 R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskii, Automata, Dynamical Systems, and Groups, Tr. Mat. Inst. im. V. A. Steklova, Ross. Akad. Nauk, 231 (2000), 134-214; Proc. Steklov Inst. Math., 231 (2000), 128-203.       
30 R. I. Grigorchuk and Ya. Krylyuk, The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters, Algebra Discrete Math., 13 (2012), 237-272.       
31 P. de la Harpe, On simplicity of reduced $C^*$-algebras of groups, Bull. London Math. Soc., 39 (2007), 1-26.       
32 N. Higson and G. Kasparov, Operator K-theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 131-142 (electronic).       
33 R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary Theory, Pure and Applied Mathematics, 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.       
34 R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. II. Advanced Theory, Pure and Applied Mathematics, 100, Academic Press, Inc., Orlando, FL, 1986.       
35 I. Lysenok, A set of defining relations for the Grigorchuk group, Mat. Zametki, 38 (1985), 503-516.       
36 S. Kerov and A. Vershik, Characters and factor representations of the infinite symmetric group, Soviet Math. Dokl., 23 (1981), 389-392.
37 H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc., 92 (1959), 336-354.       
38 G. Kuhn, Amenable actions and weak containment of certain representations of discrete groups, Proc. Amer. Math. Soc., 122 (1994), 751-757.       
39 G. Kuhn and T. Steger, More irreducible boundary representations of free groups, Duke Math. J., 82 (1996), 381-436.       
40 G. W. Mackey, The Theory of Unitary Group Representations, Chicago Lect. Math., Univ. Chicago Press, Chicago, 1976.       
41 M. Naimark, Normed Rings, Noordhoff, Groningen, 1959, xvi+560pp.       
42 V. Nekrashevych, Self-similar Groups, Math. Surv. Monogr., 117, Am. Math. Soc., Providence, RI, 2005.       
43 M. Pichot, Sur la théorie spectrale des relations d'équivalence mesurées, Journal of the Inst. of Math. Jussieu, 6 (2007), 453-500.       
44 D. Powers, Simplicity of the $C^*$-algebra associated with the free group on two generators, Duke Math. J., 42 (1975), 151-156.       
45 V. A. Rokhlin, On the basic ideas of measure theory, Mat. Sb., 25 (1949), 107-150; Engl. transl., On the fundamental ideas of measure theory, AMS Transl., No. 71, Am. Math. Soc., Providence, RI, 1952, 55pp.       
46 V. A. Rokhlin, Selected topics from the metric theory of dynamical systems, (Russian) Uspekhi Mat. Nauk, 4 (1949), 57-128.       
47 H. L. Skudlarek, Die unzerlegbaren Charaktere einiger diskreter Gruppen, Math. Ann., 223 (1976), 213-231.       
48 M. Takesaki, Theory of Operator Algebras. I, Encyclopedia of Mathematical Sciences, 124, Operator Algebras and Non-commutative Geometry, 5, Springer-Verlag, Berlin, 2002.       
49 M. Takesaki, Theory of Operator Algebras. III, Encyclopedia of Mathematical Sciences, 127, Operator Algebras and Non-commutative Geometry, 8, Springer-Verlag, Berlin, 2003.       
50 R. J. Zimmer, Hyperfinite factors and amenable ergodic actions, Inv. Math., 41 (1977), 23-31.       

Go to top