`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects
Pages: 947 - 976, Issue 3, May 2017

doi:10.3934/dcdsb.2017048      Abstract        References        Full text (2277.8K)           Related Articles

Komi Messan - Simon A. Levin Mathematical and Computational Modeling Sciences Center , Arizona State University, Tempe, AZ 85287, United States (email)
Yun Kang - Sciences and Mathematics Faculty, College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, United States (email)

1 P. Auger and J. Poggiale, Emergence of population growth models: Fast migration and slow growth, Journal of Theoretical Biology, 182 (1996), 99-108.
2 D. E. Bowler and T. G. Benton, Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics, Biological Reviews, 80 (2005), 205-225.
3 J. Colbert, E. Danchin, A. A. Dhondt and J. D. Nichols, Dispersal, Oxford University Press, New York, (2001).
4 R. Cressman and K. Vlastimil, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, Journal of Mathematical Biology, 67 (2013), 329-358.       
5 G. K. Davoren, W. A. Montevecchi and J. T. Anderson, Distributional patterns of a marine bird and its prey: Habitat selection based on prey and conspecific behaviour, Marine Ecology Progress Series, 256 (2003), 229-242.
6 D. F. Fraser and R. D. Cerri, Experimental evaluation of predator-prey relationships in a patchy environment: consequences for habitat use patterns in minnows, Ecology, 62 (1982), 307-313.
7 J. F. Fujita, M. S. and R. V. Bowen, Ant foraging behavior: Ambient temperature influences prey selection, Behavioral Ecology and Sociobiology, 15 65-68.
8 S. Ghosh and S. Bhattacharyya, A two-patch prey-predator model with food-gathering activity, Journal of Applied Mathematics and Computing, 37 (2011), 497-521.       
9 D. Grünbaum and V. R. Richard, Black-browed albatrosses foraging on antarctic krill: density-dependence through local enhancement?, Ecology, 84 (2003), 3265-3275.
10 I. Hanski, Metapopulation dynamics, Nature, 396 (1998), 41-49.
11 I. Hanski, Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes, Oikos, 87 (1999), 209-219.
12 I. Hanski, Metapopulation Ecology, Oxford University Press, Oxford, 1999.
13 I. Hanski and M. Gilpin, Metapopulation dynamics: Brief history and conceptual domain, Biological Journal of the Linnean Society, 42 (1991), 3-16.
14 L. Hansson, Dispersal and connectivity in metapopulations, Biological Journal of the Linnean Society, 42 (1991), 89-103.
15 A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251.
16 S. Hsu, S. Hubbell and P. Wlatman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.       
17 S. Hsu, On global stability of a predator-prey system, Mathematical Biosciences, 39 (1978), 1-10.       
18 Y. Huang and O. Diekmann, Predator migration in response to prey density: What are the consequences?, Journal of Mathematical Biology, 43 (2001), 561-581.       
19 V. Hutson, A theorem on average liapunov functions, Monatshefte für Mathematik, 98 (1984), 267-275.       
20 R. A. Ims and D. Hjermann, Condition-dependent dispersal, in Dispersal, Oxford University Press, Oxford, (2001), 203-216.
21 I. M. Jánosi and I. Scheuring, On the evolution of density dependent dispersal in a spatially structured population model, Journal of Theoretical Biology, 187 (1997), 397-408.
22 V. A. Jansen, Regulation of predator-prey systems through spatial interactions: A possible solution to the paradox of enrichment, Oikos, 74 (1995), 384-390.
23 V. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theoretical Population Biology, 59 (2001), 119-131.
24 Y. Kang, S. K. Sasmal and K. Messan, A two-patch prey-predator model with dispersal in predators driven by the strength of predation, preprint, arXiv:1505.03820.
25 P. Kareiva and G. Odell, Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search, American Naturalist,, 130 (1987), 233-270.
26 A. Kiester and M. Slatkin, A strategy of movement and resource utilization, Theoretical Population Biology, 6 (1974), 1-20.
27 V. Krivan, Dispersal dynamics: Distribution of lady beetles (coleoptera: Coccinellidae), European Journal of Entomology, 105 (2008), 405-409.
28 M. Kummel, D. Brown and A. Bruder, How the aphids got their spots: Predation drives self-organization of aphid colonies in a patchy habitat, Oikos, 122 (2013), 896-906.
29 X. Liu and L. Chen, Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos, Solitons & Fractals, 16 (2003), 311-320.       
30 Y. Liu, The Dynamical Behavior of a two Patch Predator-prey Model, Honor Thesis, from The College of William and Mary, 2010.
31 G. P. Markin, Foraging behavior of the argentine ant in a california citrus grove, Journal of Economic Entomology, 63 (1970), 740-744.
32 M. Massot, J. Clobert, P. Lorenzon and J.-M. Rossi, Condition-dependent dispersal and ontogeny of the dispersal behaviour: An experimental approach, Journal of Animal Ecology, 71 (2002), 253-261.
33 E. Matthysen, Density-dependent dispersal in birds and mammals, Ecography, 28 (2005), 403-416.
34 T. Namba, Density-dependent dispersal and spatial distribution of a population, Journal of Theoretical Biology, 86 (1980), 351-363.       
35 D. Nguyen-Ngoc, T. Nguyen-Huu and P. Auger, Effects of fast density dependent dispersal on pre-emptive competition dynamics, Ecological Complexity, 10 (2012), 26-33.
36 J. Poggiale, From behavioural to population level: Growth and competition, Mathematical and Computer Modelling, 27 (1998), 41-49.       
37 J. D. Reeve, Environmental variability, migration, and persistence in host-parasitoid systems, American Naturalist, 132 (1988), 810-836.
38 O. Ronce, I. Olivieri, J. Clobert and E. G. Danchin, Perspectives on the study of dispersal evolution, in Dispersal, Oxford University Press, Oxford, (2001), 341-357.
39 M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223.
40 J. F. Savino and R. A. Stein, Behavioural interactions between fish predators and their prey: effects of plant density, Animal Behaviour, 37 (1989), 311-321.
41 J. A. Silva, M. L. De Castro and D. A. Justo, Stability in a metapopulation model with density-dependent dispersal, Bulletin of Mathematical Biology, 63 (2001), 485-505.
42 A. T. Smith and M. M. Peacock, Conspecific attraction and the determination of metapopulation colonization rates, Conservation Biology, 4 (1990), 320-323.
43 J. Stamps, Conspecific attraction and aggregation in territorial species, American Naturalist, 131 (1988), 329-347.
44 Foraging behavior of ants: experiments with two species of myrmecine ants, Behavioral Ecology and Sociobiology, 2 (1977), 147-167.
45 H. R. Thieme, Mathematics in Population Biology, Princeton University Press, 2003.       

Go to top