Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Persistence in phage-bacteria communities with nested and one-to-one infection networks
Pages: 859 - 875, Issue 3, May 2017

doi:10.3934/dcdsb.2017043      Abstract        References        Full text (512.4K)           Related Articles

Dan A. Korytowski - School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, United States (email)
Hal L. Smith - Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, 85287, United States (email)

1 J. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co. , Malabar, Fl, 1980.       
2 J. Hofbauer and K. Sigmund, Evolutionary Games, Cambridge Univ. Press, 1998.       
3 L. F. Jover, M. H. Cortez and J. S. Weitz, Mechanisms of multi-strain coexistence in host-phage systems with nested infection networks, Journal of Theoretical Biology, 332 (2013), 65-77.       
4 D. Korytowski and H. L. Smith, How nested and monogamous infection networks in host-phage communities come to be, Theoretical Ecology, 8 (2015), 111-120.
5 D. Korytowski and H. L. Smith, Persistence in Phage-Bacteria Communities with Nested and One-to-One Infection Networks, arXiv:1505.03827 [q-bio.PE].
6 H. Smith and H. Thieme, Dynamical Systems and Population Persistence, GSM 118, Amer. Math. Soc. , Providence R.I., 2011.       
7 H. Smith and P. Waltman, The Theory of the Chemostat, Cambridge Univ. Press, 1995.       
8 H. R. Thieme, Persistence under relaxed point-dissipativity (with applications to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435.       
9 T. F. Thingstad, Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems, Limnol. Oceanogr., 45 (2000), 1320-1328.

Go to top