`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Malaria incidence and anopheles mosquito density in irrigated and adjacent non-irrigated villages of Niono in Mali
Pages: 841 - 857, Issue 3, May 2017

doi:10.3934/dcdsb.2017042      Abstract        References        Full text (1077.5K)           Related Articles

Moussa Doumbia - Department of Mathematics, Howard University, Washington, DC 20059, United States (email)
Abdul-Aziz Yakubu - Department of Mathematics, Howard University, Washington, DC 20059, United States (email)

1 R. Aguas, L. J. White, R. W. Snow and M. G. M. Gomes, Prospects for malaria eradication in Sub-Saharan Africa, PLoS ONE., 3 (2008): e1767.
2 S. Akbari, N. K. Vaidya and L. M. Wahl, The time distribution of sulfadoxine-pyrimethamine protection from malaria, Bulletin of Mathematical Biology, 74 (2012), 2733-2751.       
3 N. Bacaer, Approximation of the basic reproduction number $R _0$ for vector-borne diseases with a periodic vector population, Bulletin of Mathematical Biology, 69 (2007), 1067-1091.       
4 J.-F. Belieres, L. Barret, Z. Charlotte Sama and M. Kuper, https://hal.archives-ouvertes.fr/cirad-00190904/document
5 http://www.cdc.gov/malaria/about/disease.html.
6 N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of Mathematical Biology, 70 (2008), 1272-1296.       
7 B. Dembele, A. Friedman and A. A. Yakubu, Mathematical model for optimal use of sulfadoxine-pyrimethamine as a temporary malaria vaccine, Bulletin of Mathematical Biology, 72 (2010), 914-930.
8 B. Dembele, A. Friedman and A. A. Yakubu, Malaria model with periodic mosquito birth and death rates, Journal of Biological Dynamics, 3 (2009), 430-445.       
9 K. Dietz, Mathematical models for malaria in different ecological zones, Biometrics, 27 808 17TH ST NW Suite 200, Washington, DC 20006-3910: International Biometric Soc., 1971.
10 K. Dietz, W. H. Wernsdorfer and I. McGregor, Mathematical models for transmission and control of malaria, Malaria: Principles and Practice of Malariology, 2 (1988), 1091-1133.
11 M. A. Diuk-Wasser, et al., Vector abundance and malaria transmission in rice-growing villages in Mali, The American Journal of Tropical Medicine and Hygiene, 72 (2005), 725-731.
12 G. Dolo, et al., Malaria transmission in relation to rice cultivation in the irrigated Sahel of Mali, Acta Tropica 89 (2004), 147-159.
13 E. E. Frances, et al., Survivorship and distribution of immature Anopheles gambiae sl (Diptera: Culicidae) in Banambani village, Mali, Journal of Medical Entomology, 41 (2004), 333-339.
14 N. J. Govella, F. O. Okumu and G. F. Killeen, Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors, The American Journal of Tropical Medicine and Hygiene, 82 (2010), 415-419.
15 G. F. Killeen, A. Seyoum and B. G. J. Knols, Rationalizing Historical successes of malaria control in Africa in terms of mosquito resource availability management, The American Journal of Tropical Medicine and Hygiene, 71 (2004), 87-93.
16 F. Lardeux, et al., Host choice and human blood index of Anopheles pseudopunctipennis in a village of the Andean valleys of Bolivia-art. no. 8, Malaria Journal, 6 (2007), NIL$_1$-NIL$_14$.
17 G. Macdonald, The analysis of infection rates in diseases in which super infection occurs, Tropical Diseases Bulletin, 47 (1950), 907-915.
18 National Institute of Allergy and Infectious Diseases, Publication No. 02-7139, Malaria, 2002.
19 R. Ross, The Prevention of Malaria, 1911.
20 M. S. Sissoko, et al., Malaria incidence in relation to rice cultivation in the Irrigated sahel of Mali, Acta Tropica, 89 (2004), 161-170.
21 N. Sogoba, et al., Malaria transmission dynamics in Niono, Mali: The effect of the irrigation systems, Acta Tropica, 101 (2007), 232-240.
22 J. Tumwiine, J. Y. T. Mugisha and L. S. Luboobi, On oscillatory pattern of malaria dynamics in a population with temporary immunity, Computational and Mathematical Methods in Medicine, 8 (2007), 191-203.       
23 A. P. P. Wyse, L. Bevilacqua and M. Rafikov, Simulating malaria model for different treatment intensities in a variable environment, Ecological Modelling, 206 (2007), 322-330.

Go to top