Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Effects of superinfection and cost of immunity on host-parasite co-evolution
Pages: 809 - 829, Issue 3, May 2017

doi:10.3934/dcdsb.2017040      Abstract        References        Full text (590.0K)           Related Articles

Liman Dai - Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 3K7, Canada (email)
Xingfu Zou - Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 3k7, Canada (email)

1 J. Apaloo, J. S. Brown and T. L. Vincent, Evolutionary game theory: ESS, convergence stability, and NIS, Evolutionary Ecology Research, 11 (2009), 489-515.
2 R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361-367.
3 G. Beck and G. S. Habicht, Immunity and the invertebrates, Scientific American, 275 (1996), 60-66.
4 B. Boldin and O. Diekmann, Superinfections can induce evolutionarily stable coexistence of pathogens, Journal of Mathematical Biology, 56 (2008), 635-672.       
5 B. Boldin, S. A. H. Geritz and E. Kisdi, Superinfections and adaptive dynamics of pathogen virulence revisited: A critical function analysis, Evolutionary Ecology Research, 11 (2009), 153-175.
6 R. G. Bowers, The basic depression ratio of the host: The evolution of host resistance to microparasites, Proc. Roy. Soc. Lond. B, 268 (2001), 243-250.
7 A. Bugliese, The role of host population heterogeneity in the evolution of virulence, J. Biol. Dyn., 5 (2011), 104-119.       
8 C. Combes, The Art of Being a Parasite, University of Chicago Press, Chicago, 2005.
9 C. Darwin, On the Origin of Species, John Murray, London, 1859.
10 T. Day, On the evolution of virulence and the relationship between various measures of mortality, Proceedings of the Royal Society of London. Series B: Biological Sciences, 269 (2002), 1317-1323.
11 T. Day, Virulence evolution and the timing of disease life-history events, Trends in Ecology & Evolution, 18 (2003), 113-118.
12 T. Day and J. G. Burns, A consideration of patterns of virulence arising from host-parasite coevolution, Evolution, 57 (2003), 671-676.
13 U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.       
14 S. Gandon, M. van Baalen and V. A. A. Janseny, The evolution of parasite virulence, superinfection, and host resistance, The American Naturalist, 159 (2002), 658-669.
15 S. A. H. Geritz, G. Mesz and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, 12 (1998), 35-57.
16 S. A. H. Geritz, J. A. J. Metz, É. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Physical Review Letters, 78 (1997), 2024-2027.
17 B. Hall and B. Hallgrímsson, Strickberger's Evolution, Jones & Bartlett Learning,Burlington, 2008.
18 E. Kisdi, Trade-off geometries and the adaptive dynamics of two co-evolving species, Evolutionary Ecology Research, 8 (2006), 956-973.
19 O. Leimar, Evolutionary change and Darwinian demons, Selection, 2 (2002), 65-72.
20 O. Leimar, Multidimensional convergence stability, Evolutionary Ecology Research, 11 (2009), 191-208.
21 R. L. Lochmiller and C. Deerenberg, Trade-offs in evolutionary immunology: Just what is the cost of immunity, Oikos, 88 (2000), 87-98.
22 J. Ma and S. A. Levin, The evolution of resource adaptation: How generalist and specialist consumers evolve, Bull. Math. Bio., 68 (2006), 1111-1123.       
23 P. Marrow, U. Dieckmann and R. Law, Evolutionary dynamics of predator-prey systems: An ecological perspective, Journal of Mathematical Biology, 34 (1996), 556-578.
24 C. Matessi and C. Di Pasquale, Long-term evolution of multilocus traits, Journal of Mathematical Biology, 34 (1996), 613-653.
25 R. M. May and M. A. Nowak, Superinfection, metapopulation dynamics, and the evolution of diversity, Journal of Theoretical Biology, 170 (1994), 95-114.
26 J. Mosquera and F. R. Adler, Evolution of virulence: a unified framework for coinfection and superinfection, Journal of Theoretical Biology, 195 (1998), 293-313.
27 M. Nuño, Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of Two-Strain Influenza with Isolation and Partial Cross-Immunity, SIAM J. Appl. Math., 65 (2005), 964-982.       
28 Y. Pei, Closed-form conditions of bifurcation points for general differential equations, International Journal of Bifurcation and Chaos, 15 (2005), 1467-1483.       
29 T. O. Svennungsen and É. Kisdi, Evolutionary branching of virulence in a single-infection model, Journal of Theoretical Biology, 257 (2009), 408-418.       
30 H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM, J. Appl. Math., 70 (2009), 188-211.       
31 M. E. J. Woolhouse, J. P. Webster, E. Domingo, B. Charlesworth and B. R. Levin, Biological and biomedical implications of the co-evolution of pathogens and their hosts, Nature Genetics, 32 (2002), 569-577.

Go to top