`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions
Pages: 783 - 790, Issue 3, May 2017

doi:10.3934/dcdsb.2017038      Abstract        References        Full text (724.6K)           Related Articles

Alfonso Castro - Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, United States (email)
Rosa Pardo - Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040-Madrid, Spain (email)

1 H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. ISBN 978-0-387-70913-0.       
2 A. Castro, M. Hassanpour and R. Shivaji, Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity, Comm. Partial Differential Equations, 20 (1995), 1927-1936.       
3 A. Castro and R. Pardo, A priori bounds for positive solutions of subcritical elliptic equations, Revista Matem├ítica Complutense, 28 (2015), 715-731.       
4 D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9), 61 (1982), 41-63.       
5 B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.       
6 D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second edition, 1983. ISBN 3-540-13025-X.       
7 O. Ladyzhenskaya and N. Uraltseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.       
8 S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.       

Go to top