`a`
Journal of Computational Dynamics (JCD)
 

Asymptotic invariance and the discretisation of nonautonomous forward attracting sets
Pages: 179 - 189, Issue 2, December 2016

doi:10.3934/jcd.2016009      Abstract        References        Full text (360.1K)           Related Articles

Peter E. Kloeden - School of Mathematics and Statistics, Huazhong University of Science & Technology, Wuhan 430074, China (email)

1 M. C. Bortolan, A. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522.       
2 A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors of Infinite Dimensional Nonautonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.       
3 V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, Rhode Island, 2002.       
4 A. Hill, Global dissipativity for A-stable methods, SIAM J. Numer. Anal., 34 (1997), 119-142.       
5 A. Hill, Dissipativity of Runge-Kutta methods in Hilbert spaces, BIT, 37 (1997), 37-42.       
6 P. E. Kloeden, Asymptotic invariance and limit sets of general control systems, J. Differential Equations, 19 (1975), 91-105.       
7 P. E. Kloeden and V. S. Kozyakin, Uniform nonautonomous attractors under discretization, Discrete Contin. Dyn. Systems., 10 (2004), 423-433.       
8 P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-step discretizations, SIAM J. Numer. Analysis, 23 (1986), 986-995.       
9 P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016), 259-268.       
10 P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011.       
11 P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic, Nonlinear Analysis TMA, 74 (2011), 2695-2719.       
12 P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016), 513-525.       
13 V. Lakshmikantham an S. Leela, Asymptotic self-invariant sets and conditional stability, in Proc. Inter. Symp. Diff. Equations and Dynamical Systems, Puerto Rico 1965, Academic Press, New York, (1967), 363-373.       
14 J. P. Lasalle, The Stability of Dynamical Systems, SIAM-CBMS, Philadelphia, 1976.       
15 C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, vol. 2002, Springer-Verlag, Heidelberg, 2010.
16 S. Sato, T. Matsuo , H. Suzuki and D. Furihata, A Lyapunov-type theorem for dissipative numerical integrators with adaptive time-stepping, SIAM J. Numer. Anal., 53 (2015), 2505-2518.       
17 A. M. Stuart and A. R. Humphries, Numerical Analysis and Dynamical Systems, Cambridge University Press, Cambridge, 1996.       
18 M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations, Cambridge University Press, Cambridge, 1992.       

Go to top