Mathematical Biosciences and Engineering (MBE)

Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer
Pages: 777 - 804, Issue 3, June 2017

doi:10.3934/mbe.2017043      Abstract        References        Full text (1870.7K)           Related Articles

Alacia M. Voth - United Services Automobile Association, 9800 Fredericksburg Rd, San Antonio, TX 78288, United States (email)
John G. Alford - Sam Houston State University, Department of Mathematics and Statistics, Huntsville, TX 77341, United States (email)
Edward W. Swim - Sam Houston State University, Department of Mathematics and Statistics, Huntsville, TX 77341, United States (email)

1 P.-A. Abrahamsson, Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: A systematic review of the literature, European Urology, 57 (2010), 49-59.
2 H. T. Banks, S. Dediu and S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, J. Inverse Ill-Posed Probl., 15 (2007), 683-708.       
3 H. T. Banks and D. M. Bortz, A parameter sensitivity methodology in the context of HIV delay equation models, J. Math. Biol., 50 (2005), 607-625.       
4 N. C. Buchan and S. L. Goldenberg, Intermittent androgen suppression for prostate cancer, Nature Reviews Urology, 7 (2010), 552-560.
5 N. Chitnis, J. M. Hyman and J. M. Chushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.       
6 R. A. Everett, A. M. Packer and Y. Kuang, Can mathematical models predict the outcomes of prostate cancer patients undergoing intermittent androgen deprivation therapy?, Biophys. Rev. Lett., 9 (2014), 139-157.
7 J. K. Hale, Ordinary Differential Equations, $2^{nd}$ edition, Krieger Publishing, Malabar FL, 1980.       
8 Y. Hirata, N. Bruchovsky and K. Aihara, Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010), 517-527.       
9 A. M. Ideta, G. Tanaka, T. Takeuchi and K. Aihara, A mathematical model of intermittent androgen suppression for prostate cancer, J. Nonlinear Sci., 18 (2008), 593-614.
10 H. Lepor and N. D. Shore, LHRH agonists for the treatment of prostate cancer: 2012, Reviews in Urology, 14 (2012), 1-12.
11 Prostate cancer treatment (PDQ) - Patient Version, National Cancer Institute, 2016. Available from: https://www.cancer.gov/types/prostate/patient/prostate-treatment-pdq.
12 T. Portz, Y. Kuang and J. D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, AIP Advances, 2 (2012), 1-14.
13 M. H. Rashid and U. B. Chaudhary, Intermittent androgen deprivation therapy for prostate cancer, The Oncologist, 9 (2004), 295-301.
14 F. G. Rick and A. V. Schally, Bench-to-bedside development of agonists and antagonists of luteinizing hormone-releasing hormone for treatment of advanced prostate cancer, Urologic Oncology: Seminars and Original Investigations, 33 (2015), 270-274.
15 A. Sciarra, P. A. Abrahamsson, M. Brausi, M. Galsky, N. Mottet, O. Sartor, T. L. J. Tammela and F. C. da Silva, Intermittent androgen-depravation therapy in prostate cancer: a critical review focused on phase 3 trials, European Urology, 64 (2013), 722-730.
16 L. G. Stanley, Sensitivity equation methods for parameter dependent elliptic equations, Numer. Funct. Anal. Optim., 22 (2001), 721-748.       
17 Y. Suzuki, D. Sakai, T. Nomura, Y. Hirata and K. Aihara, A new protocol for intermittent androgen suppresion therapy of prostate cancer with unstable saddle-point dynamics, J. Theor. Biol., 350 (2014), 1-16.       
18 G. Tanaka, K. Tsumoto, S. Tsuji and K. Aihara, Analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer, Physica D, 237 (2008), 2616-2627.       
19 F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, $2^{nd}$ edition, Springer-Verlag, Berlin, 1996.       
20 L. Voth, The Exploration and Computations of Mathematical Models of Intermittent Treatment for Prostate Cancer, M.S. thesis, Sam Houston University, 2012.

Go to top