`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response
Pages: 717 - 740, Issue 3, May 2017

doi:10.3934/dcdsb.2017035      Abstract        References        Full text (1303.5K)           Related Articles

Eric Avila-Vales - Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte, Tablaje 13615, C.P. 97119, Mérida, Mexico (email)
Gerardo García-Almeida - Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte, Tablaje 13615, C.P. 97119, Mérida, Mexico (email)
Erika Rivero-Esquivel - Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte, Tablaje 13615, C.P. 97119, Mérida, Mexico (email)

1 D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83 (2002), 28-34.
2 J. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, The Journal of Animal Ecology, 44 (1975), 331-340.
3 Q. Bie, Q. Wang and Z.-a. Yao, Cross-diffusion induced instability and pattern formation for a Holling type- II predator-prey model, Applied Mathematics and Computation, 247 (2014), 1-12.       
4 R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley & Sons, 2003.       
5 D. L. DeAngelis, R. Goldstein and R. O'neill, A model for tropic interaction, Ecology, 56 (1975), 881-892.
6 J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol. 42, Springer-Verlag, New York, 1990.       
7 G.-P. Hu and X.-L. Li, Turing patterns of a predator-prey model with a modified Leslie-Gower term and cross-diffusions, International Journal of Biomathematics, 5 (2012), 1250060, 17 pp.       
8 Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112, Springer Science & Business Media, 2004.       
9 H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation, Chapman & Hall/CRC Press London, 2008.       
10 E. A. McGehee, N. Schutt, D. A. Vasquez and E. Peacock-Lopez, Bifurcations, and temporal and spatial patterns of a modified lotka-volterra model, International Journal of Bifurcation and Chaos, 18 (2008), 2223-2248.       
11 J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Intercisciplinary Applied Mathematics: Mathematical Biology, Springer, 2003.       
12 A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer, 2001.       
13 S. Sarwardi, M. Haque and P. K. Mandal, Persistence and global stability of bazykin predator-prey model with beddington-deangelis response function, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 189-209.       
14 J. Shen and Y. M. Jung, Geometric and stochastic analysis of reaction-diffusion patterns, Int J Pure Appl Math, 19 (2005), 195-248.       
15 H.-B. Shi and S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA Journal of Applied Mathematics, 80 (2015), 1534-1568.       
16 E. Tulumello, M. C. Lombardo and M. Sammartino, Cross-diffusion driven instability in a predator-prey system with cross-diffusion, Acta Applicandae Mathematicae, 132 (2014), 621-633.       
17 A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 237 (1952), 37-72.       
18 R. K. Upadhyay, P. Roy and J. Datta, Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and turing instability, Nonlinear Dynamics, 79 (2015), 2251-2270.       
19 X. Wang and Y. Cai, Cross-diffusion-driven instability in a reaction-diffusion harrison predator-prey model, in Abstract and Applied Analysis, Hindawi Publishing Corporation, 2013 (2013), Art. ID 306467, 9 pp.       
20 F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations, 246 (2009), 1944-1977.       
21 E. Zemskov, Nonlinear analysis of a reaction-diffusion system: Amplitude equations, Journal of Experimental and Theoretical Physics, 115 (2012), 729-732.
22 E. Zemskov, K. Kassner, M. Hauser and W. Horsthemke, Turing space in reaction-diffusion systems with density-dependent cross diffusion, Physical Review E, 87 (2013), 032906.
23 J.-F. Zhang, W.-T. Li and Y.-X. Wang, Turing patterns of a strongly coupled predator-prey system with diffusion effects, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 847-858.       
24 J. Zhou, Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type III functional response, Nonlinear Dynamics, 81 (2015), 1535-1552.       

Go to top