Structure analysis on the $k$error linear complexity for $2^n$periodic binary sequences
Pages: 1743  1757,
Issue 4,
October
2017
doi:10.3934/jimo.2017016 Abstract
References
Full text (400.4K)
Related Articles
Jianqin Zhou  Department of Computing, Curtin University, Perth, WA 6102, Australia (email)
Wanquan Liu  Department of Computing, Curtin University of Technology, Perth, WA 6102, Australia (email)
Xifeng Wang  School of Computer Science, Anhui Univ. of Technology, Maanshan 243032, China (email)
1 
Z. L. Chang and X. Y. Wang, On the First and Second Critical Error Linear Complexity of Binary $2^n$periodic Sequences, Chinese Journal of Electronics, 22 (2013), 16. 

2 
C. S. Ding, G. Z. Xiao and W. J. Shan, The Stability Theory of Stream Ciphers[M], Lecture Notes in Computer Science, Vol.561. Berlin/ Heidelberg, Germany: SpringerVerlag, 1991. 

3 
T. Etzion, N. Kalouptsidis, N. Kolokotronis, K. Limniotis and K. G. Paterson, Properties of the error linear complexity spectrum, IEEE Transactions on Information Theory, 55 (2009), 46814686. 

4 
F. Fu, H. Niederreiter and M. Su, The characterization of $2^n$periodic binary sequences with fixed 1error linear complexity, In: Gong G., Helleseth T., Song H.Y., Yang K. (eds.) SETA 2006, LNCS, 4086 (2006), 88103. Springer. 

5 
R. A. Games and A. H. Chan, A fast algorithm for determining the complexity of a binary sequence with period $2^n$, IEEE Trans on Information Theory, 29 (1983), 144146. 

6 
N. Kolokotronis, P. Rizomiliotis and N. Kalouptsidis, Minimum linear span approximation of binary sequences, IEEE Transactions on Information Theory, 48 (2002), 27582764. 

7 
K. Kurosawa, F. Sato, T. Sakata and W. Kishimoto, A relationship between linear complexity and $k$error linear complexity, IEEE Transactions on Information Theory, 46 (2000), 694698. 

8 
A. Lauder and K. Paterson, Computing the error linear complexity spectrum of a binary sequence of period $2^n$, IEEE Transactions on Information Theory, 49 (2003), 273280. 

9 
J. L. Massey, Shift register synthesis and BCH decoding, IEEE Trans on Information Theory, 15 (1969), 122127. 

10 
W. Meidl, How many bits have to be changed to decrease the linear complexity?, Des. Codes Cryptogr., 33 (2004), 109122. 

11 
W. Meidl, On the stablity of $2^n$periodic binary sequences, IEEE Transactions on Information Theory, 51 (2005), 11511155. 

12 
R. A. Rueppel, Analysis and Design of Stream Ciphers, Berlin: SpringerVerlag, 1986, chapter 4. 

13 
M. Stamp and C. F. Martin, An algorithm for the $k$error linear complexity of binary sequences with period $2^n$, IEEE Trans. Inform. Theory, 39 (1993), 13981401. 

14 
J. Q. Zhou, On the $k$error linear complexity of sequences with period 2$p^n$ over GF(q), Des. Codes Cryptogr., 58 (2011), 279296. 

15 
J. Q. Zhou and W. Q. Liu, The $k$error linear complexity distribution for $2^n$periodic binary sequences, Des. Codes Cryptogr., 73 (2014), 5575. 

16 
J. Q. Zhou, W. Q. Liu and G. L. Zhou, Cube theory and stable $k$error linear complexity for periodic sequences, Inscrypt, LNCS, 8567 (2013), 7085. 

17 
J. Q. Zhou and W. Q. Liu, On the $k$error linear complexity for $2^n$periodic binary sequences via Cube Theory, 2013, http://arxiv.org/abs/1309.1829 

18 
F. X. Zhu and W. F. Qi, The 2error linear complexity of $2^n$periodic binary sequences with linear complexity $2^n$1, Journal of Electronics (China), 24 (2007), 390395. 

Go to top
