Journal of Modern Dynamics (JMD)

Mean action and the Calabi invariant
Pages: 511 - 539, Volume 10, 2016

doi:10.3934/jmd.2016.10.511      Abstract        References        Full text (272.2K)           Related Articles

Michael Hutchings - Department of Mathematics, 970 Evans Hall, University of California, Berkeley, CA 94720, United States (email)

1 A. Abbondandolo, B. Bramham, U. Hryniewicz and P. Salamão, Sharp systolic inequalities for Reeb flows on the three-sphere, arXiv:1504.05258.
2 E. Calabi, On the group of automorphisms of a symplectic manifold, in Problems in Analysis (Lectures at the Sympos. in honor of S. Bochner, Princeton Univ., Princeton, N.J., 1969) (ed. R. C. Gunning), Princeton Univ. Press, Princeton, 1970, 1-26.       
3 V. Colin, P. Ghiggini and K. Honda, Embedded contact homology and open book decompositions, arXiv:1008.2734.
4 D. Cristofaro-Gardiner, The absolute gradings on embedded contact homology and Seiberg-Witten Floer cohomology, Algebr. Geom. Topol., 13 (2013), 2239-2260.       
5 D. Cristofaro-Gardiner, M. Hutchings and V. Ramos, The asymptotics of ECH capacities, Invent. Math., 199 (2015), 187-214.       
6 Y. Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds, in Topological Methods in Modern Mathematics, Publish or Perish, Houston, TX, 1993, 171-193.       
7 M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., (2003), 1635-1676.       
8 J. Etnyre, Legendrian and transversal knots, in Handbook of Knot Theory, Elsevier B. V., Amsterdam, 2005, 105-185.       
9 J. Franks, Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math., 2 (1996), 1-19.       
10 J.-M. Gambaudo and É. Ghys, Enlacements asymptotiques, Topology, 36 (1997), 1355-1379.       
11 H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectizations. II. Embedding controls and algebraic invariants, Geom. and Func. Anal., 5 (1995), 270-328.       
12 H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2), 148 (1998), 197-289.       
13 H. Hofer, K. Wysock and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), 157 (2003), 125-255.       
14 M. Hutchings, Quantitative embedded contact homology, J. Diff. Geom., 88 (2011), 231-266.       
15 M. Hutchings, Lecture notes on embedded contact homology, in Contact and Symplectic Topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 389-484.       
16 M. Hutchings, Embedded contact homology as a (symplectic) field theory, in preparation.
17 M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders I, J. Symplectic Geom., 5 (2007), 43-137.       
18 M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders II, J. Symplectic Geom., 7 (2009), 29-133.       
19 M. Hutchings and C. H. Taubes, Proof of the Arnold chord conjecture in three dimensions, II, Geom. Topol., 17 (2013), 2601-2688.       
20 P. B. Kronheimer and T. S. Mrowka, Monopoles and Three-Manifolds, Cambridge Univ. Press, 2007.
21 R. Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math., 61 (2008), 1631-1684.       
22 C. H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology I, Geom. Topol., 14 (2010), 2497-2581.       

Go to top