`a`
Journal of Modern Dynamics (JMD)
 

The automorphism group of a minimal shift of stretched exponential growth
Pages: 483 - 495, Volume 10, 2016

doi:10.3934/jmd.2016.10.483      Abstract        References        Full text (178.0K)           Related Articles

Van Cyr - Department of Mathematics, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, United States (email)
Bryna Kra - Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, United States (email)

1 H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3), 25 (1972), 603-614.       
2 M. Boyle, D. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114.       
3 E. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts, using atypical equivalence classes, Discrete Anal., (2016), 1-28.       
4 V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth, Proc. Amer. Math. Soc., 144 (2016), 613-621.       
5 V. Cyr and B. Kra, The automorphism group of a shift of linear growth: beyond transitivity, Forum Math. Sigma, 3 (2015), e5, 27pp.       
6 P. de la Harpe, Topics in Geometric Group Theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.       
7 S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems, 36 (2016), 64-95.       
8 S. Donoso, F. Durand, A. Maass and S. Petite, Private communication.
9 M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.       
10 Y. Guivarc'h, Groupes de Lie á croissance polynomiale, C. R. Acad. Sci. Paris Sér. A-B, 272 (1971), A1695-A1696.       
11 G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory, 3 (1969), 320-375.       
12 M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42.       
13 K. H. Kim and F. W. Roush, On the automorphism groups of subshifts, Pure Math. Appl. Ser. B, 1 (1990), 203-230.       
14 V. Salo, Toeplitz subshift whose automorphism group is not finitely generated, Colloquium Mathematicum, (2016).
15 V. Salo and I. Törmä, Block maps between primitive uniform and Pisot substitutions, Ergodic Theory and Dynam. Systems, 35 (2015), 2292-2310.       
16 L. van den Dries and A. Wilkie, Gromov's theorem on groups of polynomial growth and elementary logic, J. Algebra, 89 (1984), 349-374.       

Go to top