`a`
Mathematical Biosciences and Engineering (MBE)
 

Modelling chemistry and biology after implantation of a drug-eluting stent. Part I: Drug transport
Pages: 491 - 509, Issue 2, April 2017

doi:10.3934/mbe.2017030      Abstract        References        Full text (678.9K)           Related Articles

Tuoi Vo - Mathematics Applications Consortium for Science and Industry, University of Limerick, Castletroy, Co. Limerick, Ireland (email)
William Lee - Department of Mathematics, University of Portsmouth, Winston Churchill Ave, Portsmouth PO1 2UP, United Kingdom (email)
Adam Peddle - College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, Devon, EX4 4QF, United Kingdom (email)
Martin Meere - School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland (email)

1 J. P. Alberding, A. L. Baldwin, J. K. Barton and E. Wiley, Effects of pulsation frequency and endothelial integrity on enhanced arterial transmural filtration produced by pulsatile pressure, Am. J. Physiol. Heart Circ. Physiol., 289 (2005), H931-H937.
2 A. L. Baldwin, L. M. Wilson, I. Gradus-Pizlo, R. Wilensky and K. March, Effect of atherosclerosis on transmural convection and arterial ultrastructure, JArterioscler. Thromb. Vasc. Biol., 17 (1997), 3365-3375.
3 J. Bennett and C. Dubois, A novel platinum chromium everolimus-eluting stent for the treatment of coronary artery disease, Biologics: Targets and Therapy, 17 (2013), 149-159.
4 P. Biscari, S. Minisini, D. Pierotti, G. Verzini and P. Zunino, Controlled release with finite dissolution rate, SIAM Journal on Applied Mathematics , 71 (2011), 731-752.       
5 A. Borghi, E. Foa, R. Balossino, F. Migliavacca and G. Dubini, Modelling drug elution from stents: Effects of reversible binding in the vascular wall and degradable polymeric matrix, Computer Methods in Biomechanics and Biomedical Engineering, 11 (2008), 367-377.
6 F. Bozsak, J. Chomaz and A. I. Barakat, Modeling the transport of drugs eluted from stents: Physical phenomena driving drug distribution in the arterial wall, Biomech Model Mechanobiol, 13 (2014), 327-347.
7 D. Capodanno, F. Dipasqua and C. Tamburino, Novel drug-eluting stents in the treatment of de novo coronary lesions, Vasc Health Risk Management, 7 (2011), 103-118.
8 D. S. Cohen and T. Erneux, Controlled drug release asymptotics, SIAM Journal on Applied Mathematics, 58 (1998), 1193-1204.       
9 C. Conway, J. P. McGarry and P. E. McHugh, Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty, Annals of Biomedical Engineering, 42 (2014), 2425-2439.
10 G. Frenning, Theoretical analysis of the release of slowly dissolving drugs from spherical matrix systems, Journal of Controlled Release, 95 (2004), 109-117.
11 M. J. Lever, J. M. Tarbell and C. G. Caro, The effect of luminal flow in rabbit carotid artery on transmural fluid transport, Experimental Physiology, 77 (1992), 553-563.
12 A. D. Levin, N. Vukmirovic, C. Hwang and E. R. Edelman, Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel, PNAS, 101 (2004), 9463-9467.
13 M. A. Lovich and E. R. Edelman, Computational simulations of local vascular heparin deposition and distribution, American Journal of Physiology, 271 (1996), H2014-H2024.
14 D. M. Martin and F. J. Boyle, Drug-eluting stents for coronary artery disease: A review, Medical Engineering & Physics, 33 (2011), 148-163.
15 S. McGinty, A decade of modelling drug release from arterial stents, Mathematical Bioscience, 257 (2014), 80-90.       
16 S. McGinty, S. McKee, C. McCormick and M. Wheel, Release mechanism and parameter estimation in drug-eluting stent systems: Analytical solutions of drug release and tissue transport, Mathematical Medicine and Bilology, 32 (2015), 163-186.       
17 S. McGinty, S. McKee, R. M. Wadsworth and C. McCormick, Modelling drug-eluting stents, Mathematical Medicine and Bilology, 28 (2011), 1-29.       
18 S. McGinty and G. Pontrelli, A general model of coupled drug release and tissue absorption for drug delivery devices, Journal of Controlled Release, 217 (2015), 327-336.
19 A. Peddle, T. T. N. Vo and W. Lee, Modelling chemistry and biology after implantation of a drug-eluting stent. Part II: Cell proliferation, in progress.
20 L. E. L. Perkins, K. H. Boeke-Purkis, Q. Wang, S. K. Stringer and L. A. Coleman, XIENCE V Everolimus-eluting coronary stent system: A preclinical assessment, Journal of Interventional Cardiology, 22 (2009), S28-S40.
21 D. V. Sakharov, L. V. Kalachev and D. C. Rijken, Numerical simulation of local pharmacokinetics of a drug after intravascular delivery with an eluting stent, Journal of Drug Targeting, 10 (2002), 507-513.
22 R. W. Sirianni, E. Jang, K. M. Miller and W. M. Saltzman, Parameter estimation methodology in a model of hydrophobic drug release from a polymer coating, Journal of Controlled Release, 142 (2010), 474-482.
23 A. Tedgui and M. J. Lever, Filtration through damaged and undamaged rabbit thoracic aorta, Am. J. Physiol., 247 (1984), H784-H791.
24 A. R. Tzafriri, A. Groothuis, G. S. Price and E. R. Edelman, Stent elution rate determines drug deposition and receptor-mediated effects, Journal of Controlled Release, 161 (2012), 918-926.
25 A. R. Tzafriri, A. D. Levin and E. R. Edelman, Diffusion-limited binding explains binary dose response for local arterial and tumor drug delivery, Cell Proliferation, 42 (2009), 348-363.
26 T. T. N. Vo, R. Yang, Y. Rochev and M. Meere, A mathematical model for drug delivery, Progress in Industrial Mathematics at ECMI 2010, Mathematics in Industry, 17 (2012), 521-528.
27 T. T. N. Vo, Mathematical Analysis of Some Models for Drug Delivery, PhD thesis, National University of Ireland Galway, 2012.
28 P. Zunino, Multidimensional pharmacokinetic models applied to the design of drug-eluting stents, Cardiovascular Engineering, 4 (2004), 181-191.

Go to top