`a`
Mathematical Biosciences and Engineering (MBE)
 

Population models with quasi-constant-yield harvest rates
Pages: 467 - 490, Issue 2, April 2017

doi:10.3934/mbe.2017029      Abstract        References        Full text (670.6K)           Related Articles

Kunquan Lan - Department of Mathematics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada (email)
Wei Lin - School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai 200433, China (email)

1 H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM. Rev., 18 (1976), 620-709.       
2 V. Anuradha, D. D. Hai and R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc., 124 (1996), 757-763.       
3 J. E. M. Baillie, C. Hilton-Taylor and S. N. Stuart, eds., IUCN red list of threatened species, A Global Species Assessment, IUCN, Gland, Switzerland, Cambridge, UK, 2004.
4 F. Brauer and D. A. S├ínchez, Constant rate population harvesting: Equilibrium and stability, Theor. Popula. Biology, 8 (1975), 12-30.       
5 F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking, J. Math. Biol., 12 (1981), 101-114.       
6 F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant-rate prey harvesting, J. Math. Biol., 8 (1979), 55-71.       
7 C. W. Clark, Mathmatics Bioeconomics, The Optimal Management of Renewable Resources, Second edition, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1990.       
8 E. Conway, R. Gardner and J. Smoller, Stability and bifurcation of steady-state solutions for predator-prey equations, Adv. Appl. Math., 3 (1982), 288-334.       
9 E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.       
10 J. Dugundji, An extension of Tietze's theorem, Pacific J. Math., 1 (1951), 353-367.       
11 R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 353-369.
12 K. Q. Lan, Multiple positive solutions of semi-positone Sturm-Liouville boundary value problems, Bull. London Math. Soc., 38 (2006), 283-293.       
13 K. Q. Lan, Positive solutions of semi-positone Hammerstein integral equations and applications, Commun. Pure Appl. Anal., 6 (2007), 441-451.       
14 K. Q. Lan, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems, Nonlinear Anal., 71 (2009), 5979-5993.       
15 K. Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63 (2001), 690-704.       
16 K. Q. Lan, Multiple positive solutions of Hammerstein integral equations with singularities, Differential Equations Dynam. Systems, 8 (2000), 175-192.       
17 K. Q. Lan and C. R. Zhu, Phase portraits of predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. A., 32 (2012), 901-933.       
18 K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), 407-421.       
19 L. G. Li, Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. Math. Soc., 305 (1988), 143-166.       
20 D. Ludwig, D. C. Aronson and H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biology, 8 (1979), 217-258.       
21 R. Ma, Positive solutions for semipositone $(k, n-k)$ conjugate boundary value problems, J. Math. Anal. Appl., 252 (2000), 220-229.       
22 M. G. Neubert, Marine reserves and optimal harvesting, Ecol. Lett., 6 (2003), 843-849.
23 A. Okubo, Diffusion and Ecological Problems: Mathematical Models. An Extended Version of the Japanese Edition, Ecology and Diffusion, Translated by G. N. Parker. Biomathematics, 10. Springer-Verlag, Berlin-New York, 1980.       
24 S. Oruganti, J. Shi and R. Shivaji, Diffusive equations with constant yield harvesting, I: Steady states, Trans. Amer. Math. Soc., 354 (2002), 3601-3619.       
25 L. Roques and M. D. Chekroun, On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007), 133-153.       
26 J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.       
27 D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737-753.       
28 Z. Zhao, Positive solutions of semi-positone Hammerstein integral equations and applications, Appl. Math. Comput., 219 (2012), 2789-2797.       
29 C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 289-306.       

Go to top