`a`
Mathematical Biosciences and Engineering (MBE)
 

Global stability of a multistrain SIS model with superinfection
Pages: 421 - 435, Issue 2, April 2017

doi:10.3934/mbe.2017026      Abstract        References        Full text (346.6K)           Related Articles

Attila Dénes - Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged,, Hungary (email)
Yoshiaki Muroya - Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan (email)
Gergely Röst - Analysis and Stochastics Research Group, Hungarian Academy of Sciences, Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary (email)

1 S. Bianco, L. B. Shaw and I. B. Schwartz, Epidemics with multistrain interactions: The interplay between cross immunity and antibody-dependent enhancement, Chaos, 19 (2009), 043123.
2 D. Bichara, A. Iggidr and G. Sallet, Global analysis of multi-strains SIS, SIR and MSIR epidemic models, J. Appl. Math. Comput., 44 (2014), 273-292.       
3 A. Dénes and G. Röst, Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1101-1117.       
4 A. Dénes and G. Röst, Structure of the global attractors in a model for ectoparasite-borne diseases, BIOMATH, 1 (2012), 1209256, 5 pp.       
5 A. Dénes and G. Röst, Global dynamics for the spread of ectoparasite-borne diseases, Nonlinear Anal. Real World Appl., 18 (2014), 100-107.       
6 A. Dénes and G. Röst, Impact of excess mortality on the dynamics of diseases spread by ectoparasites, in: M. Cojocaru, I. S. Kotsireas, R. N. Makarov, R. Melnik, H. Shodiev, (Eds.), Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, Springer Proceedings in Mathematics & Statistics, 117 (2015), 177-182.       
7 T. Faria and Y. Muroya, Global attractivity and extinction for Lotka-Volterra systems with infinite delay and feedback controls, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 301-330.       
8 S. Kryazhimskiy, U. Dieckmann, S. A. Levin and J. Dushoff, On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A, PLoS Comput. Biol., 3 (2007), 1513-1525.       
9 M. Martcheva, A non-autonomous multi-strain SIS epidemic model, J. Biol. Dyn., 3 (2009), 235-251.       
10 M. A. Nowak, Evolutionary Dynamics, The Belknap Press of Harvard University Press, Cambridge, MA, 2006.       
11 H. R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math., 24 (1994), 351-380.       

Go to top