Mathematical Biosciences and Engineering (MBE)

On a mathematical model of bone marrow metastatic niche
Pages: 289 - 304, Issue 1, February 2017

doi:10.3934/mbe.2017019      Abstract        References        Full text (645.0K)           Related Articles

Ana Isabel Muñoz - Departamento de Matemática Aplicada, Ciencia e Ingeniera de Materiales y Tecnología Electrónica, ESCET, Universidad Rey Juan Carlos, E28933, Móstoles, Madrid, Spain (email)
J. Ignacio Tello - Departamento de Matemática Aplicada, E.T.S.I. Sistemas Informáticos, Universidad Politécnica de Madrid, 28031 Madrid, Spain (email)

1 R. A. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.       
2 A. A. Bryden, S. Islam, A. J. Freemont, J. H. Shanks, N. J. George and N. W. Clarke, Parathyroid hormone-related peptide: Expression in prostate cancer bone metastases, Prostate Cancer Prostatic Dis, 5 (2002), 59-62.
3 L. M. Calvi, G. B. Adams, K. W. Weibrecht, J. M. Weber, D. P. Olson, M. C. Knight, R. P. Martin, E. Schipani, P. Divieti, F. R. Bringhurst, L. A. Milner, H. M. Kronenberg and D. T. Scadden, Osteoblastic cells regulate the haematopoietic stem cell niche, Nature, 425 (2003), 841-846.
4 S. L. Chang, S. P. Cavnar, S. Takayama, G. D. Luker and J. J. Linderman, Cell, isoform, and environment factors shape gradients and modulate chemotaxis, PLoS One, 10 (2015), e0123450.
5 N. L. Coggins, D. Trakimas, S. L. Chang, A. Ehrlich, P. Ray, K. E. Luker, J. J. Linderman and G. D. Luker, CXCR7 controls competition for recruitment of $\beta$-arrestin 2 in cells expressing both CXCR4 and CXCR7, PLoS One, 9 (2014), 841-846.
6 K. Golan, O. Kollet and T. Lapidot, Dynamic cross talk between S1P and CXCL12 regulates hematopoietic stem cells migration, development and bone remodeling, Pharmaceuticals, 6 (2013), 1145-1169.
7 G. Innamorati, M. T. Valenti, F. Giovinazzo, L. Dalle Carbonare, M. Parenti and C. Bassi, Molecular approaches to target gpcrs in cancer therapy, Pharmaceuticals, 4 2011, 567-589.
8 S. V. Komarova, R. J. Smith, S. J. Dixon, S. M. Sims and L. M. Wahlb, Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling, Bone, 33 (2003), 206-215.
9 A. J. Lilly, W. E. Johnson and C. M. Bunce, The haematopoietic stem cell niche: New insights into the mechanisms regulating haematopoietic stem cell behaviour, Stem Cells International, 2011 (2011), ID 274564.
10 A. I. Muñoz, Numerical resolution of a model of tumor growth, Mathematical Medicine and Biology, 33 (2016), 1-29.       
11 G. O'Boyle, I. Swidenbank, H. Marshall, C. E. Barker, J. Armstrong, S. A. White, S. P. Fricker, R. Plummer, M. Wright and P. E. Lovat, Inhibition of CXCR4/CXCL12 chemotaxis in melanoma by AMD11070, Br J Cancer., 108 (2013), 1634-1640, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668477/
12 T. Oskarsson, E. Batlle and J. Massague, Metastatic stem cells: Sources, niches, and vital pathways, Cell Stem Cell, 14 (2014), 306-321.
13 A. A. Rose and P. M. Siegel, Emerging therapeutic targets in breast cancer bone metastasis, Future Oncol., 6 (2010), 55-74.
14 M. D. Ryser, N. Nigam and S. V. Komarova, Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit, J. of Bone and Mineral Research, 24 (2009), 860-870.
15 J. Sceneay, M. J. Smyth and A. Möller, The pre-metastatic niche: Finding common ground, Cancer Metastasis Rev., 32 (2013), 449-464.
16 Y. X. Sun, J. Wang, C. E. Shelburne, D. E. Lopatin, A. M. Chinnaiyan, M. A. Rubin, K. J. Pienta and R. S. Taichman, Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo, Journal of Cellular Biochemistry, 89 (2003), 462-473.
17 R. S. Taichman, C. Cooper, E. T. Keller, K. J. Pienta, N. S. Taichman and L. K. McCauley, Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone, Cancer Research, 62 (2002), 1832-1837.
18 J. I. Tello, On a mathematical model of tumor growth based on cancer stem cells, Math. Biosc. Eng., 10 (2013), 263-278.       

Go to top