`a`
Mathematical Biosciences and Engineering (MBE)
 

A criterion of collective behavior of bacteria
Pages: 277 - 287, Issue 1, February 2017

doi:10.3934/mbe.2017018      Abstract        References        Full text (1273.2K)           Related Articles

Roman Czapla - Institute of Computer Science, Pedagogical University, ul. Podchorazych 2, Krakow 30-084, Poland (email)
Vladimir V. Mityushev - Institute of Computer Science, Pedagogical University, ul. Podchorazych 2, Krakow 30-084, Poland (email)

1 N. I. Akhiezer, Elements of Theory of Elliptic Functions, Nauka, 1970 (in Russian); Engl. transl. AMS, 1990.
2 R. Czapla, V. V. Mityushev and W. Nawalaniec, Effective conductivity of random two-dimensional composites with circular non-overlapping inclusions, Computational Materials Science, 63 (2012), 118-126.
3 R. Czapla, V. V. Mityushev and W. Nawalaniec, Simulation of representative volume elements for random 2D composites with circular non-overlapping inclusions, Theoretical and Applied Informatics, 24 (2012), 227-242.
4 R. Czapla, V. V. Mityushev and N. Rylko, Conformal mapping of circular multiply connected domains onto segment domains, Electron. Trans. Numer. Anal., 39 (2012), 286-297.       
5 S. Gluzman, D. A. Karpeev and L. V. Berlyand, Effective viscosity of puller-like microswimmers: A renormalization approach, J. R. Soc. Interface, 10 (2013), 1-10.
6 V. V. Mityushev, Representative cell in mechanics of composites and generalized Eisenstein-Rayleigh sums, Complex Variables, 51 (2006), 1033-1045.       
7 V. V. Mityushev and P. Adler, Longitudial permeability of a doubly periodic rectangular array of circular cylinders, I, ZAMM (Journal of Applied Mathematics and Mechanics), 82 (2002), 335-345.       
8 V. V. Mityushev and W. Nawalaniec, Basic sums and their random dynamic changes in description of microstructure of 2D composites, Computational Materials Science, 97 (2015), 64-74.
9 V. V. Mityushev and N. Rylko, Optimal distribution of the non-overlapping conducting disks, Multiscale Model. Simul., 10 (2012), 180-190.       
10 W. Nawalaniec, Algorithms for computing symbolic representations of basic esums and their application to composites, Journal of Symbolic Computation, 74 (2016), 328-345.
11 M. Potomkin, V. Gyrya, I. Aranson and L. Berlyand, Collision of microswimmers in viscous fluid, Physical Review E, 87 (2013), 053005.
12 S. D. Ryan, L. Berlyand, B. M. Haines and D. A. Karpeev, A kinetic model for semi-dilute bacterial suspensions, Multiscale Model. Simul., 11 (2013), 1176-1196.       
13 S. D. Rayn, B. M. Haines, L. Berlyand, F. Ziebert and I. S. Aranson, Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise, Rapid Communication to Phys. Rev. E, 83 (2011), 050904(R).
14 S. D. Ryan, A. Sokolov, L. Berlyand and I. S. Aranson, Correlation properties of collective motion in bacterial suspensions, New Journal of Physics, 15 (2013), 105021, 18pp.
15 N. Rylko, Representative volume element in 2D for disks and in 3D for balls, J. Mechanics of Materials and Structures, 9 (2014), 427-439.
16 A. Sokolov and I. S. Aranson, Reduction of viscosity in suspension of swimming bacteria, Phys. Rev. Lett., 103 (2009), 148101.
17 A. Sokolov and I. S. Aranson, Physical properties of collective motion in suspensions of bacteria, Phys. Rev. Lett., 109 (2012), 248109.
18 A. Sokolov, I. S. Aranson, J. O. Kessler and R. E. Goldstein, Concentration dependence of the collective dynamics of swimming bacteria, Physical Review Letters, 98 (2007), 158102.
19 A. Sokolov, R. E. Goldstein, F. I. Feldstein and I. S. Aranson, Enhanced mixing and spatial instability in concentrated bacteria suspensions, Phys. Rev.E, 80 (2009), 031903.
20 M. Tournus, L. V. Berlyand, A. Kirshtein and I. Aranson, Flexibility of bacterial flagella in external shear results in complex swimming trajectories, Journal of the Royal Society Interface, 12 (2015), 1-11.
21 A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag, 1976.       

Go to top