Mathematical Biosciences and Engineering (MBE)

Sufficient optimality conditions for a class of epidemic problems with control on the boundary
Pages: 263 - 275, Issue 1, February 2017

doi:10.3934/mbe.2017017      Abstract        References        Full text (576.9K)           Related Articles

Alicja Miniak-Górecka - Faculty of Math and Computer Sciences, University of Lodz, Banacha 22, 90-238 Lodz, Poland (email)
Andrzej Nowakowski - University of Lodz, Faculty of Math & Computer Sciences, Banacha 22, 90-238 Lodz, Poland (email)

1 V. Arnautu, V. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optim., 20 (1989), 297-317.       
2 V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Science+Business Media, Springer 2012.       
3 V. Capasso, Mathematical Structures of Epidemic Systems, Lect. Notes in Biomath., 97, Springer 2008.       
4 V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quart. Appl. Math., 46 (1988), 431-450.       
5 E. Galewska and A. Nowakowski, A dual dynamic programming for multidimensional elliptic optimal control problems, Numer. Funct. Anal. Optim., 27 (2006), 279-289.       
6 W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: A mathematical model, PLoS ONE, 9 (2014), e90497.
7 A. Miniak-Górecka, Construction of Computational Method for $\varepsilon $-Optimal Solutions Shape Optimization Problems, PhD thesis, 2015.
8 A. Nowakowski, The dual dynamic programming, Proc. Amer. Math. Soc., 116 (1992), 1089-1096.       
9 A. Nowakowski, Sufficient optimality conditions for Dirichlet boundary control of wave equations, SIAM J. Control Optim., 47 (2008), 92-110.       
10 I. Nowakowska and A. Nowakowski, A dual dynamic programming for minimax optimal control problems governed by parabolic equation, Optimization, 60 (2011), 347-363.       
11 A. Nowakowski and J. Sokołowski, On dual dynamic programming in shape control, Commun. Pure Appl. Anal., 11 (2012), 2473-2485.       

Go to top