`a`
Mathematical Biosciences and Engineering (MBE)
 

Spatio-temporal models of synthetic genetic oscillators
Pages: 249 - 262, Issue 1, February 2017

doi:10.3934/mbe.2017016      Abstract        References        Full text (2902.1K)           Related Articles

Cicely K. Macnamara - School of Mathematics and Statistics, Mathematical Institute, North Haugh, University of St Andrews, St Andrews KY16 9SS, Scotland (email)
Mark A. J. Chaplain - School of Mathematics and Statistics, Mathematical Institute, North Haugh, University of St Andrews, St Andrews KY16 9SS, Scotland (email)

1 S. Busenberg and J. M. Mahaffy, Interaction of spatial diffusion and delays in models of genetic control by repression, J. Math. Biol., 22 (1985), 313-333.       
2 A. Cangiani and R. Natalini, A spatial model of cellular molecular trafficking including active transport along microtubules, J. Theor. Biol., 267 (2010), 614-625.       
3 M. A. J. Chaplain, M. Ptashnyk and M. Sturrock, Hopf bifurcation in a gene regulatory network model: Molecular movement causes oscillations, Math. Models Method Appl. Sci., 25 (2015), 1179-1215.       
4 Y. Y. Chen, K. E. Galloway and C. D. Smolke, Synthetic biology: Advancing biological frontiers by building synthetic systems, Genome Biology, 13 (2012), p240.
5 L. Dimitrio, J. Clairambault and R. Natalini, A spatial physiological model for p53 intracellular dynamics, J. Theor. Biol., 316 (2013), 9-24.       
6 J. Eliaš and J. Clairambault, Reaction-diffusion systems for spatio-temporal intracellular protein networks: A beginner's guide with two examples, Comp. Struct. Biotech. J., 10 (2014), 14-22.
7 J. Eliaš, L. Dimitrio, J. Clairambault and R. Natalini, Modelling p53 dynamics in single cells: Physiologically based ODE and reaction-diffusion PDE models, Phys. Biol., 11 (2014), 045001.
8 J. Eliaš, L. Dimitrio, J. Clairambault and R. Natalini, The p53 protein and its molecular network: Modelling a missing link between DNA damage and cell fate, Biochim. Biophys. Acta (BBA Proteins and Proteomics), 1844 (2014), 232-247.
9 M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, 403 (2000), 335-338.
10 L. Glass and S. A. Kauffman, Co-operative components, spatial localization and oscillatory cellular dynamics, J. Theor. Biol., 34 (1972), 219-237.
11 B. C. Goodwin, Oscillatory behaviour in enzymatic control processes, Adv. Enzyme Regul., 3 (1965), 425-428.
12 K. E. Gordon, I. M. M. V. Leeuwen, S. Lain and M. A. J. Chaplain, Spatio-temporal modelling of the p53-Mdm2 oscillatory system, Math. Model. Nat. Phenom., 4 (2009), 97-116.       
13 J. S. Griffith, Mathematics of cellular control processes. I. negative feedback to one gene, J. Theor. Biol., 20 (1968), 202-208.
14 H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa and R. Kageyama, Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop, Science, 298 (2002), 840-843.
15 M. H. Jensen, J. Sneppen and G. Tiana, Sustained oscillations and time delays in gene expression of protein Hes1, FEBS Lett., 541 (2003), 176-177.
16 R. Kagemyama, T. Ohtsuka and T. Kobayashi, The Hes1 gene family: Repressors and oscillators that orchestrate embryogenesis, Development, 134 (2007), 1243-1251.
17 T. Kobayashi and R. Kageyama, Hes1 regulates embryonic stem cell differentiation by suppressing notch signaling, Genes to Cells, 15 (2010), 689-698.
18 T. Kobayashi and R. Kageyama, Hes1 oscillations contribute to heterogeneous differentiation responses in embryonic stem cells, Genes 2 (2011), 219-228.
19 T. Kobayashi, H. Mizuno, I. Imayoshi, C. Furusawa, K. Shirahige and R. Kageyama, The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells, Genes & Development, 23 (2009), 1870-1875.
20 G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A. J. Levine, M. B. Elowitz and U. Alon, Dynamics of the p53-Mdm2 feedback loop in individual cells, Nature Genet., 36 (2004), 147-150.
21 E. Lieberman-Aiden, N. L. van Berkum, L. Williams , M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander and J. Dekker, Comprehensive mapping of long range interactions reveals folding principles of the human genome, Science, 326 (2009), 289-293.
22 R.-T. Liu, S.-S. Liaw and P. K. Maini, Oscillatory turing patterns in a simple reaction-diffusion system, J. Korean Phys. Soc., 50 (2007), 234-238.
23 J. M. Mahaffy, Genetic control models with diffusion and delays, Math. Biosci., 90 (1988), 519-533.       
24 J. M. Mahaffy and C. V. Pao, Models of genetic control by repression with time delays and spatial effects, J. Math. Biol., 20 (1984), 39-57.       
25 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon, Network motifs: Simple building blocks of complex networks, Science, 298 (2002), 824-827.
26 H. Momiji and N. A. M. Monk, Dissecting the dynamics of the Hes1 genetic oscillator, J. Theor. Biol., 254 (2008), 784-798.
27 N. A. M. Monk, Oscillatory expression of Hes1, p53, and NF-$\kappa$B driven by transcriptional time delays, Curr. Biol., 13 (2003), 1409-1413.
28 F. Naqib, T. Quail, L. Musa, H. Vulpe, J. Nadeau, J. Lei and L. Glass, Tunable oscillations and chaotic dynamics in systems with localized synthesis, Phys. Rev. E, 85 (2012), 046210.
29 E. L. O'Brien, E. Van Itallie and M. R. Bennett, Modeling synthetic gene oscillators, Math. Biosci., 236 (2012), 1-15.       
30 O. Purcell, N. J. Savery, C. S. Grierson and M. di Bernardo, A comparative analysis of synthetic genetic oscillators, J. R. Soc. Interface, 7 (2010), 1503-1524.
31 L. Sang, H. A. Coller and M. J. Roberts, Control of the reversibility of cellular quiescence by the transcriptional repressor HES1, Science, 321 (2008), 1095-1100.
32 Y. Schaerli, A. Munteanu, M. Gili, J. Cotterell, J. Sharpe and M. Isalan, A unified design space of synthetic stripe-forming networks, Nat. Commun., 5 (2014), p4905.
33 R. M. Shymko and L. Glass, Spatial switching in chemical reactions with heterogeneous catalysis, J. Chem. Phys., 60 (1974), 835-841.
34 R. D. Skeel and M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM J. Sci. and Stat. Comput., 11 (1990), 1-32.       
35 M. Sturrock, A. Hellander, A. Matzavinos and M. A. J. Chaplain, Spatial stochastic modelling of the Hes1 gene regulatory network: Intrinsic noise can explain heterogeneity in embryonic stem cell differentiation, J. R. Soc. Interface, 10 (2013), 20120988.
36 M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson and M. A. J. Chaplain, Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways, J. Theor. Biol., 273 (2011), 15-31.       
37 M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson and M. A. J. Chaplain, Influence of the nuclear membrane, active transport and cell shape on the Hes1 and p53-Mdm2 pathways: Insights from spatio-temporal modelling, Bull. Math. Biol., 74 (2012), 1531-1579.       
38 Z. Szymańska, M. Parisot and M. Lachowicz, Mathematical modeling of the intracellular protein dynamics: The importance of active transport along microtubules, J. Theor. Biol., 363 (2014), 118-128.       
39 G. Tiana, M. H. Jensen and K. Sneppen, Time delay as a key to apoptosis induction in the p53 network, Eur. Phys. J., 29 (2002), 135-140.
40 B. Yordanov, N. Dalchau, P. K. Grant, M. Pedersen, S. Emmott, J. Haseloff and A. Phillips, A computational method for automated characterization of genetic components, ACS Synthetic Biology, 3 (2014), 578-588.

Go to top