`a`
Mathematical Biosciences and Engineering (MBE)
 

Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion
Pages: 237 - 248, Issue 1, February 2017

doi:10.3934/mbe.2017015      Abstract        References        Full text (376.2K)           Related Articles

Henryk Leszczyński - Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland (email)
Monika Wrzosek - Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland (email)

1 K. Amano, Newton's method for stochastic differential equations and its probabilistic second-order error estimate, Electron. J. Differential Equations, 2012 (2012), 1-8.       
2 Z. Brzeźniak and M. Ondreját, Weak solutions to stochastic wave equations with values in Riemannian manifolds, Commun. Part. Diff. Eq., 36 (2011), 1624-1653.
3 P. Caithamer, The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise, Stoch. Dynam., 5 (2005), 45-64.       
4 P.-L. Chow, Stochastic wave equations with polynomial nonlinearity, Ann. Appl. Probab., 12 (2002), 361-381.       
5 D. Conus and R. C. Dalang, The non-linear stochastic wave equation in high dimension, Electron. J. Probab., 13 (2008), 629-670.       
6 R. C. Dalang, Extending martingale measure stochastic integral with applications to spatially homogeneous spdes, Electron. J. Probab., 4 (1999), 1-29.       
7 R. C. Dalang, The stochastic wave equation, A Minicourse on Stochastic Partial Differential Equations, in Lecture Notes in Math., 1962 (2009), Springer Berlin, 39-71.       
8 R. C. Dalang, C. Mueller and R. Tribe, A Feynman-Kac-type formula for the deterministic and stochastic wave equations and other P.D.E.s, Trans. Amer. Math. Soc., 360 (2008), 4681-4703.       
9 R. C. Dalang and M. Sanz-Solé, Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three, Mem. Amer. Math. Soc., 199 (2009), 1-70.       
10 E. Hausenblas, Weak approximation of the stochastic wave equation, J. Comput. Appl. Math., 235 (2010), 33-58.       
11 J. Huang, Y. Hu and D. Nualart, On Hölder continuity of the solution of stochastic wave equations, Stoch. Partial Differ. Equ. Anal. Comput., 2 (2014), 353-407.       
12 S. Kawabata and T. Yamada, On Newton's method for stochastic differential equations, in Séminaire de Probabilités XXV, Lecture Notes in Math., 1485 (1991), Springer Berlin, 121-137.       
13 J. U. Kim, On the stochastic wave equation with nonlinear damping, Appl. Math. Optim., 58 (2008), 29-67.       
14 C. Marinelli and L. Quer-Sardanyons, Existence of weak solutions for a class of semilinear stochastic wave equations, Siam J. Math. Anal., 44 (2012), 906-925.       
15 A. Millet and M. Sanz-Solé, A stochastic wave equation in two space dimensions: Smoothness of the law, Ann. Probab., 27 (1999), 803-844.       
16 M. Nedeljkov and D. Rajter, A note on a one-dimensional nonlinear stochastic wave equation, Novi Sad Journal of Mathematics, 32 (2002), 73-83.       
17 S. Peszat, The Cauchy problem for a nonlinear stochastic wave equation in any dimension, J. Evol. Equ., 2 (2002), 383-394.       
18 L. Quer-Sardanyons and M. Sanz-Solé, Absolute continuity of the law of the solution to the 3-dimensional stochastic wave equation, J. Funct. Anal., 206 (2004), 1-32.       
19 L. Quer-Sardanyons and M. Sanz-Solé, Space semi-discretisations for a stochastic wave equation, Potential Anal., 24 (2006), 303-332.       
20 M. Sanz-Solé and A. Suess, The stochastic wave equation in high dimensions: Malliavin differentiability and absolute continuity, Electron. J. Probab., 18 (2013), 1-28.       
21 J. B. Walsh, An introduction to stochastic partial differential equations, in: École d'été de Probabilités de Saint-Flour XIV, Lecture Notes in Math, 1180 (1986), Springer Berlin, 265-439.       
22 J. B. Walsh, On numerical solutions of the stochastic wave equation, Illinois J. Math., 50 (2006), 991-1018.       
23 M. Wrzosek, Newton's method for stochastic functional differential equations, Electron. J.Differential Equations, 2012 (2012), 1-10.       
24 M. Wrzosek, Newton's method for parabolic stochastic functional partial differential equations, Functional Differential Equations, 20 (2013), 285-310.       
25 M. Wrzosek, Newton's method for first-order stochastic functional partial differential equations, Commentationes Mathematicae, 54 (2014), 51-64.       

Go to top