`a`
Mathematical Biosciences and Engineering (MBE)
 

Estimation of initial functions for systems with delays from discrete measurements
Pages: 165 - 178, Issue 1, February 2017

doi:10.3934/mbe.2017011      Abstract        References        Full text (586.3K)           Related Articles

Krzysztof Fujarewicz - Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland (email)

1 M. Anguelova and B. Wennberg, State elimination and identifiability of the delay parameter for nonlinear time-delay systems, Automatica, 44 (2008), 1373-1378.       
2 C. T. H. Baker and E. I. Parmuzin, Identification of the initial function for nonlinear delay differential equations, Russ. J. Numer. Anal. Math. Modelling, 20 (2005), 45-66.       
3 C. T. H. Baker and E. I. Parmuzin, Initial function estimation for scalar neutral delay differential equations, Russ. J. Numer. Anal. Math. Modelling, 23 (2008), 163-183.       
4 L. Belkoura, J. P. Richard and M. Fliess, Parameters estimation of systems with delayed and structured entries, Automatica, 45 (2009), 1117-1125.       
5 K. Fujarewicz and A. Galuszka, Generalized backpropagation through time for continuous time neural networks and discrete time measurements, Artificial Intelligence and Soft Computing - ICAISC 2004 (eds. L. Rutkowski, J. Siekmann, R. Tadeusiewicz and L. A. Zadeh), Lecture Notes in Computer Science, 3070 (2004), 190-196.
6 K. Fujarewicz, M. Kimmel and A. Swierniak, On fitting of mathematical models of cell signaling pathways using adjoint systems, Math. Biosci. Eng., 2 (2005), 527-534.       
7 K. Fujarewicz, M. Kimmel, T. Lipniacki and A. Swierniak, Adjoint systems for models of cell signalling pathways and their application to parametr fitting, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4 (2007), 322-335.
8 K. Fujarewicz and K. Lakomiec, Parameter estimation of systems with delays via structural sensitivity analysis, Discrete and Continuous Dynamical Systems - series B, 19 (2014), 2521-2533.       
9 K. Fujarewicz and K. Lakomiec, Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization, Mathematical Biosciences and Engineering, 13 (2016), 1131-1142.
10 M. Jakubczak and K. Fujarewicz, Application of adjoint sensitivity analysis to parameter estimation of age-structured model of cell cycle, in Information Technologies in Medicine,
11 K. Łakomiec, S. Kumala, R. Hancock, J. Rzeszowska-Wolny and K. Fujarewicz, Modeling the repair of DNA strand breaks caused by $\gamma$-radiation in a minichromosome, Physical Biology, 11 (2014), 045003.
12 M. Liu, Q. G. Wang, B. Huang and C. C. Hang, Improved identification of continuous-time delay processes from piecewise step tests, Journal of Process Control, 17 (2007), 51-57.
13 R. Loxton, K. L. Teo and V. Rehbock, An optimization approach to state-delay identification, IEEE Transactions on Automatic Control, 55 (2010), 2113-2119.       
14 B. Ni, D. Xiao and S. L. Shah, Time delay estimation for MIMO dynamical systems with time-frequency domain analysis, Journal of Process Control, 20 (2010), 83-94.
15 B. Rakshit, A. R. Chowdhury and P. Saha, Parameter estimation of a delay dynamical system using synchronization inpresence of noise, Chaos, Solitons and Fractals, 32 (2007), 1278-1284.
16 J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 1667-1694.       
17 Y. Tang and X. Guan, Parameter estimation of chaotic system with time-delay: A differential evolution approach, Chaos, Solitons and Fractals, 42 (2009), 3132-3139.
18 Y. Tang and X. Guan, Parameter estimation for time-delay chaotic systems by particle swarm optimization, Chaos, Solitons and Fractals, 40 (2009), 1391-1398.

Go to top