Estimation of initial functions for systems with delays from discrete measurements
Pages: 165  178,
Issue 1,
February
2017
doi:10.3934/mbe.2017011 Abstract
References
Full text (586.3K)
Related Articles
Krzysztof Fujarewicz  Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44100 Gliwice, Poland (email)
1 
M. Anguelova and B. Wennberg, State elimination and identifiability of the delay parameter for nonlinear timedelay systems, Automatica, 44 (2008), 13731378. 

2 
C. T. H. Baker and E. I. Parmuzin, Identification of the initial function for nonlinear delay differential equations, Russ. J. Numer. Anal. Math. Modelling, 20 (2005), 4566. 

3 
C. T. H. Baker and E. I. Parmuzin, Initial function estimation for scalar neutral delay differential equations, Russ. J. Numer. Anal. Math. Modelling, 23 (2008), 163183. 

4 
L. Belkoura, J. P. Richard and M. Fliess, Parameters estimation of systems with delayed and structured entries, Automatica, 45 (2009), 11171125. 

5 
K. Fujarewicz and A. Galuszka, Generalized backpropagation through time for continuous time neural networks and discrete time measurements, Artificial Intelligence and Soft Computing  ICAISC 2004 (eds. L. Rutkowski, J. Siekmann, R. Tadeusiewicz and L. A. Zadeh), Lecture Notes in Computer Science, 3070 (2004), 190196. 

6 
K. Fujarewicz, M. Kimmel and A. Swierniak, On fitting of mathematical models of cell signaling pathways using adjoint systems, Math. Biosci. Eng., 2 (2005), 527534. 

7 
K. Fujarewicz, M. Kimmel, T. Lipniacki and A. Swierniak, Adjoint systems for models of cell signalling pathways and their application to parametr fitting, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4 (2007), 322335. 

8 
K. Fujarewicz and K. Lakomiec, Parameter estimation of systems with delays via structural sensitivity analysis, Discrete and Continuous Dynamical Systems  series B, 19 (2014), 25212533. 

9 
K. Fujarewicz and K. Lakomiec, Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization, Mathematical Biosciences and Engineering, 13 (2016), 11311142. 

10 
M. Jakubczak and K. Fujarewicz, Application of adjoint sensitivity analysis to parameter estimation of agestructured model of cell cycle, in Information Technologies in Medicine, 

11 
K. Ĺakomiec, S. Kumala, R. Hancock, J. RzeszowskaWolny and K. Fujarewicz, Modeling the repair of DNA strand breaks caused by $\gamma$radiation in a minichromosome, Physical Biology, 11 (2014), 045003. 

12 
M. Liu, Q. G. Wang, B. Huang and C. C. Hang, Improved identification of continuoustime delay processes from piecewise step tests, Journal of Process Control, 17 (2007), 5157. 

13 
R. Loxton, K. L. Teo and V. Rehbock, An optimization approach to statedelay identification, IEEE Transactions on Automatic Control, 55 (2010), 21132119. 

14 
B. Ni, D. Xiao and S. L. Shah, Time delay estimation for MIMO dynamical systems with timefrequency domain analysis, Journal of Process Control, 20 (2010), 8394. 

15 
B. Rakshit, A. R. Chowdhury and P. Saha, Parameter estimation of a delay dynamical system using synchronization inpresence of noise, Chaos, Solitons and Fractals, 32 (2007), 12781284. 

16 
J. P. Richard, Timedelay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 16671694. 

17 
Y. Tang and X. Guan, Parameter estimation of chaotic system with timedelay: A differential evolution approach, Chaos, Solitons and Fractals, 42 (2009), 31323139. 

18 
Y. Tang and X. Guan, Parameter estimation for timedelay chaotic systems by particle swarm optimization, Chaos, Solitons and Fractals, 40 (2009), 13911398. 

Go to top
