Mathematical Biosciences and Engineering (MBE)

Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic
Pages: 127 - 141, Issue 1, February 2017

doi:10.3934/mbe.2017009      Abstract        References        Full text (365.1K)           Related Articles

Marco Di Francesco - DISIM, Università degli Studi dell’Aquila, via Vetoio 1 (Coppito), 67100 LAquila (AQ), Italy (email)
Simone Fagioli - DISIM, Università degli Studi dell’Aquila, via Vetoio 1 (Coppito), 67100 LAquila (AQ), Italy (email)
Massimiliano D. Rosini - Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland (email)

1 B. Andreianov, C. Donadello, U. Razafison, J. Y. Rolland and M. D. Rosini, Solutions of the Aw-Rascle-Zhang system with point constraints, Networks and Heterogeneous Media, 11 (2016), 29-47, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=12228.       
2 B. Andreianov, C. Donadello and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Mathematical Models and Methods in Applied Sciences, 26 (2016), 751-802, URL http://www.worldscientific.com/doi/abs/10.1142/S0218202516500172.       
3 A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic Follow-the-Leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278, URL http://dx.doi.org/10.1137/S0036139900380955.       
4 A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938, URL http://dx.doi.org/10.1137/S0036139997332099.       
5 P. Bagnerini and M. Rascle, A multi-class homogenized hyperbolic model of traffic flow, SIAM Journal of Mathematical Analysis, 35 (2003), 949-973.       
6 F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Archive for Rational Mechanics and Analysis, 187 (2008), 185-220, URL http://dx.doi.org/10.1007/s00205-007-0061-9.       
7 A. Bressan, Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem, vol. 20, Oxford university press, 2000.       
8 C. Chalons and P. Goatin, Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Commun. Math. Sci., 5 (2007), 533-551, URL http://projecteuclid.org/euclid.cms/1188405667.       
9 M. Di Francesco and M. Rosini, Rigorous derivation of nonlinear scalar conservation laws from Follow-the-Leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831-871, URL http://dx.doi.org/10.1007/s00205-015-0843-4.       
10 M. Di Francesco, S. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, preprint, arXiv:1605.05883.
11 M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Deterministic particle approximation of the Hughes model in one space dimension, preprint, arXiv:1602.06153.
12 M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows, preprint.
13 R. E. Ferreira and C. I. Kondo, Glimm method and wave-front tracking for the Aw-Rascle traffic flow model, Far East J. Math. Sci., 43 (2010), 203-223.       
14 D. C. Gazis, R. Herman and R. W. Rothery, Nonlinear Follow-the-Leader models of traffic flow, Operations Res., 9 (1961), 545-567.       
15 M. Godvik and H. Hanche-Olsen, Existence of solutions for the Aw-Rascle traffic flow model with vacuum, Journal of Hyperbolic Differential Equations, 5 (2008), 45-63, URL http://www.worldscientific.com/doi/abs/10.1142/S0219891608001428.       
16 M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, in Royal Society of London. Series A, Mathematical and Physical Sciences, 229 (1955), 317-345.       
17 S. Moutari and M. Rascle, A hybrid lagrangian model based on the Aw-Rascle traffic flow model, SIAM Journal on Applied Mathematics, 68 (2007), 413-436, URL http://dx.doi.org/10.1137/060678415.       
18 I. Prigogine and R. Herman, Kinetic theory of vehicular traffic, IEEE Transactions on Systems, Man, and Cybernetics, 2 (1972), p295.
19 P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.       
20 A. I. Vol'pert, The spaces BV and quasilinear equations, (Russian) Mat. Sb. (N.S.), 73 (1967), 255-302, URL http://stacks.iop.org/0025-5734/2/i=2/a=A06.       
21 H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290, URL http://www.sciencedirect.com/science/article/pii/S0191261500000503.

Go to top