`a`
Mathematical Biosciences and Engineering (MBE)
 

Angiogenesis model with Erlang distributed delays
Pages: 1 - 15, Issue 1, February 2017

doi:10.3934/mbe.2017001      Abstract        References        Full text (715.5K)           Related Articles

Emad Attia - Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt (email)
Marek Bodnar - Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland (email)
Urszula Foryś - Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland (email)

1 T. Alarcón, M. R. Owen, H. M. Byrne and P. K. Maini, Multiscale modelling of tumour growth and therapy: The influence of vessel normalisation on chemotherapy, Computational and Mathematical Methods in Medicine, 7 (2006), 85-119.       
2 Z. Agur, L. Arakelyan, P. Daugulis and Y. Ginosar, Hopf point analysis for angiogenesis models, Discrete Contin. Dyn. Syst. B, 4 (2004), 29-38.       
3 A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumour-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857-899.
4 L. Arakelyan, V. Vainstein and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth, Angiogenesis, 5 (2002), 203-214.
5 E. Attia, M. Bodnar and U. Foryś, Angiogenesis model with erlang distributed delay in vessels formation, Proceedings of XIX National Conference on Application of Mathematics in Biology and Medicine (Regietów), ed. Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, September 2015, pp. 9-14.
6 K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors, Journal of Theoretical Biology, 241 (2006), 903-918.       
7 M. Bodnar and U. Foryś, Angiogenesis model with carrying capacity depending on vessel density, J. Biol. Sys., 17 (2009), 1-25.       
8 M. Bodnar and U. Foryś, Influence of time delays on the Hahnfeldt et al. angiogenesis model dynamics, Appl. Math. (Warsaw), 36 (2009), 251-262.       
9 M. Bodnar, M. J. Piotrowska, U. Foryś and E. Nizińska, Model of tumour angiogenesis - analysis of stability with respect to delays, Math. Biosci. Eng., 10 (2013), 19-35.       
10 M. Bodnar and M. J. Piotrowska, Stability analysis of the family of tumour angiogenesis models with distributed time delays, Communications in Nonlinear Science and Numerical Simulation, 31 (2016), 124-142.       
11 M. Bodnar, P. Guerrero, R. Perez-Carrasco and M. J. Piotrowska, Deterministic and stochastic study for a microscopic angiogenesis model: Applications to the Lewis Lung carcinoma, PLoS ONE, 11 (2016), e0155553.
12 H. M. Byrne, M. A. J. Chaplain, Growth of non-nerotic tumours in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181.
13 K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations, Funkcj. Ekvacioj, 29 (1986), 77-90.       
14 A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. (1999), Math. Biosci., 191 (2004), 159-184.       
15 J. Folkman, Tumor angiogenesis: therapeutic implications, N. Engl. J. Med., 285, (1971), 1182-1186.
16 U. Foryś and M. J. Piotrowska, Analysis of the Hopf bifurcation for the family of angiogenesis models II: The case of two nonzero unequal delays, Appl. Math. and Comp., 220 (2013), 277-295.       
17 P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res., 59 (1999), 4770-4775.
18 Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, New York, 1991.       
19 M. E. Orme and M. A. J. Chaplain, Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies, IMA J. Math. Appl. Med. Biol., 14 (1997), 189-205.
20 M. J. Piotrowska and U. Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models, J. Math. Anal. Appl., 382 (2011), 180-203.       
21 J. Poleszczuk, M. Bodnar and U. Foryś, New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model, Math. Biosci. Eng., 8 (2011), 591-603.       
22 M. Scianna, C.G. Bell, and L. Preziosi, A review of mathematical models for the formation of vascular networks Journal of Theoretical Biology, 333 (2013), 174-209.
23 M. Welter, K. Bartha and H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, Journal of Theoretical Biology, 259 (2009), 405-422.       

Go to top