Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity
Pages: 1223  1240,
Issue 6,
December
2016
doi:10.3934/mbe.2016040 Abstract
References
Full text (977.7K)
Related Articles
Shuo Wang  Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo, 63130, United States (email)
Heinz Schättler  Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo 63130, United States (email)
1 
N. André, L. Padovani and E. Pasquier, Metronomic scheduling of anticancer treatment: The next generation of multitarget therapy?, Future Oncology, 7 (2011), 385394. 

2 
B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Springer Verlag, Series: Mathematics and Applications, Vol. 40, 2003. 

3 
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007. 

4 
A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bull. of Math. Biology, 65 (2003), 407424. 

5 
R. A. Gatenby, A. S. Silva, R. J. Gillies and B. R. Frieden, Adaptive therapy, Cancer Research, 69 (2009), 48944903. 

6 
R. A. Gatenby, A change of strategy in the war on cancer, Nature, 459 (2009), 508509. 

7 
J. H. Goldie, Drug resistance in cancer: A perspective, Cancer and Metastasis Review, 20 (2001), 6368. 

8 
J. H. Goldie and A. Coldman, A model for resistance of tumor cells to cancer chemotherapeutic agents, Mathematical Biosciences, 65 (1983), 291307. 

9 
R. Grantab, S. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells, Cancer Research, 66 (2006), 10331039. 

10 
J. Greene, O. Lavi, M. M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bull. Math. Biol., 76 (2014), 627653. 

11 
O. Lavi, J. Greene, D. Levy and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Research, 73 (2013), 71687175. 

12 
U. Ledzewicz, H. Maurer and H. Schättler, Minimizing tumor volume for a mathematical model of antiangiogenesis with linear pharmacokinetics, in Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring and W. Michiels, Eds., (2010), 267276. 

13 
U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal control in cancer chemotherapy models, Mathematical Biosciences and Engineering (MBE), 2 (2005), 561578. 

14 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Contr. Optim., 46 (2007), 10521079. 

15 
U. Ledzewicz and H. Schättler, Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control and Cybernetics, 38 (2009), 15011523. 

16 
J. S. Li and N. Khaneja, Ensemble control of linear systems, Proc. of the 46th IEEE Conference on Decision and Control, 2007, 37683773. 

17 
J. S. Li and N. Khaneja, Ensemble control of Bloch equations, IEEE Transactions on Automatic Control, 54 (2009), 528536. 

18 
A. Lorz, T. Lorenzi, M. E. Hochberg, J. Clairambault and B. Berthame, Population adaptive evolution, chemotherapeutic resistance and multiple anticancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 377399. 

19 
A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol., 77 (2015), 122. 

20 
L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treatment Reports, 61 (1977), 13071317. 

21 
L. Norton and R. Simon, The NortonSimon hypothesis revisited, Cancer Treatment Reports, 70 (1986), 4161. 

22 
E. Pasquier, M. Kavallaris and N. André, Metronomic chemotherapy: New rationale for new directions, Nature ReviewsClinical Oncology, 7 (2010), 455465. 

23 
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964. 

24 
H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer, New York, 2012 

25 
H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Springer, 2015. 

Go to top
