`a`
Mathematical Biosciences and Engineering (MBE)
 

Multiplayer games and HIV transmission via casual encounters
Pages: 359 - 376, Issue 2, April 2017

doi:10.3934/mbe.2017023      Abstract        References        Full text (628.6K)           Related Articles

Stephen Tully - Department of Mathematics & Statistics, University of Guelph, Guelph ON Canada N1G 2W1, Canada (email)
Monica-Gabriela Cojocaru - Department of Mathematics & Statistics, University of Guelph, Guelph ON Canada N1G 2W1, Canada (email)
Chris T. Bauch - Department of Applied Mathematics & Statistics, University of Waterloo, Waterloo ON Canada, Canada (email)

1 K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica, 22 (1954), 265-290.       
2 J. P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag New York, 1984.       
3 R. M. Axelrod, The complexity of cooperation: Agent-based models of competition and collaboration, Princeton University Press, 1997.
4 T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, SIAM, 1995.       
5 A. Bensoussan, Points de Nash dans le cas de fonctionnelles quadratiques et jeux differentiels lineaires a N personnes, SIAM J. Control, 12 (1974), 460-499.       
6 Center for Disease Control and Prevention, Diagnoses of HIV Infection in the United States and Dependent Areas, HIV Surveillance Report, 2011.
7 B. Coburn, and S. Blower, A major HIV risk factor for young men who have sex with men is sex with older partners, J. Acquir. Immune Defic. Syndr., 54 (2010), 113-114.
8 M. G. Cojocaru and L. B. Jonker, Existence of solutions to projected differential equations on Hilbert spaces, Proceedings of the American Mathematical Society, 132 (2004), 183-193.       
9 Cojocaru, M.-G., Wild, E., On Describing the Solution Sets of Generalized Nash Games with Shared Constraints, submitted to: Optimization and Engineering, 2016.
10 M. G. Cojocaru, C. T. Bauch and M. D. Johnston, Dynamics of vaccination strategies via projected dynamical systems, Bulletin of mathematical biology, 69 (2007), 1453-1476.       
11 M. G. Cojocaru, Dynamic equilibria of group vaccination strategies in a heterogeneous population, Journal of Global Optimization, 40 (2008), 51-63.       
12 J. P. Dodds, A. Nardone, D. E. Mercey and A. M. Johnson, Increase in high risk sexual behaviour among homosexual men, London 1996-8: Cross sectional, questionnaire study, BMI, 320 (2000), 1510-1511.
13 F. Facchinei, A. Fischer and V. Piccialli, On generalized Nash games and variational inequalities, Operations Research Letters, 35 (2007), 159-164.       
14 F. Fachinei and C. Kanzow, Generalized Nash Equilibrium Problems, Ann Oper Res, 175 (2010), 177-211.       
15 J. W. Friedman, Game theory with applications to economics, Oxford University Press New York, 1990.
16 D. Gabay and H. Moulin, On the uniqueness and stability of Nash-equilibria in noncooperative games, Applied Stochastic Control in Econometrics and Management Science, 130 (1980), 271-293.       
17 R. H. Gray, M. J. Wawer, R. Brookmeyer, N. K. Sewankambo, D. Serwadda, F. Wabwire-Mangen, T. Lutalo, X. Li, T. VanCott and T. C. Quinn, Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda, The Lancet., 357 (2001), 1149-1153.
18 D. Greenhalgh and F. Lewis, Stochastic models for the spread of HIV amongst intravenous drug users, Stochastic Models, 17 (2001), 491-512.       
19 T. B. Hallett, S. Gregson, O. Mugurungi, E. Gonese and G. P. Garnett, Assessing evidence for behaviour change affecting the course of HIV epidemics: a new mathematical modelling approach and application to data from Zimbabwe, Epidemics, 1 (2009), 108-117.
20 Y. H. Hsieh and C. H. Chen, Modelling the social dynamics of a sex industry: Its implications for spread of HIV/AIDS, Bulletin of Mathematical Biology, 66 (2004), 143-166.       
21 J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.       
22 D. M. Huebner and M. A. Gerend, The relation between beliefs about drug treatments for HIV and sexual risk behavior in gay and bisexual men, Annals of Behavioral Medicine, 4 (2001), 304-312.
23 T. Ichiishi, Game Theory for Economic Analysis, New York: Academic Press, New York, 1983.       
24 D. Kinderlehrer and D. Stampacchia, An Introduction to Variational Inequalities and their Application, Academic Press, New York, 1980.       
25 K. Nabetani, P. Tseng and M. Fukushima, Parametrized Variational Inequality Approaches to Generalized Nash Equilibrium Problems with Shared Constraints, (Technical Report 2008), Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Japan.
26 J. F. Nash, Equilibrium points in n-person games, Proceedings of the national academy of sciences,36 (1950), 48-49.       
27 J.-S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games, CMS, 2 (2005), 21-56.       
28 R. H. Remien, P. N. Halkitis, A. O'Leary, R. J. Wolitski and C. A. Gómez, Risk perception and sexual risk behaviors among HIV-positive men on antiretroviral therapy, AIDS and Behavior, 9 (2005), 167-176.
29 J. B. Rosen, Existence and uniqueness of equilibrium points for concave n-person games, Econometrica, 33 (1965), 520-534.       
30 K. D. Schroeder and F. G. Rojas, A game theoretical analysis of sexually transmitted disease epidemics, Rationality and Society, 14 (2002), 353-383.
31 R. J. Smith and S. M. Blower, Could disease-modifying HIV vaccines cause population-level perversity?, The Lancet Infectious Diseases, 4 (2004), 636-639.
32 J. M. Stephenson, J. Imrie, M. M. D. Davis, C. Mercer, S. Black, A. J. Copas, G. J. Hart, O. R. Davidson and I. G. Williams, Is use of antiretroviral therapy among homosexual men associated with increased risk of transmission of HIV infection?, Sexually Transmitted Infections, 79 (2003), 7-10.
33 S. Tully, M. G. Cojocaru and C. T. Bauch, Coevolution of risk perception, sexual behaviour, and HIV transmission in an agent-based model, Journal of theoretical biology, 337 (2013), 125-132.       
34 P. T. Harker, Generalized Nash games and quasi-variational inequalities, European Journal of Operational Research, 54 (1991), 81-94.
35 S. Tully, M. G. Cojocaru and C. T. Bauch, Sexual behaviour, risk perception, and HIV transmission can respond to HIV antiviral drugs and vaccines through multiple pathways, Scientific Reports, 5 (2015).
36 J. X. Velasco-Hernandez and Y. H. Hsieh, Modelling the effect of treatment and behavioral change in HIV transmission dynamics, Journal of mathematical biology, 32 (1994), 233-249.
37 J. Von Neumann and O. Morgenstern, Theory of games and economic behavior, Bulletin of American Mathematical Society, 51 (1945), 498-504.
38 U. S. Census Bureau, Current Population Survey: Annual Social and Economic Supplement, 2012. Available at: https://www.census.gov/topics/population.html, (Accessed: Aug 2013).
39 University of Western News, HIV vaccine produces no adverse effects in trials, 2013, Available at: http://communications.uwo.ca/western_news/stories/2013/\\ September/hiv_vaccine_produces_no_adverse_effects_in_trials.html, (Accessed: Sept 2014).
40 Global Health Observatory, World Health Organization, 2014, Available at: http://www.who.int/gho/hiv/en/, (Accessed: Sept 2014).
41 Index Mundi, Zimbabwe Age structure, 2007, Available at: http://www.indexmundi.com/zimbabwe/age_structure.html, (Accessed: Aug 2014).

Go to top