`a`
Journal of Modern Dynamics (JMD)
 

Typical dynamics of plane rational maps with equal degrees
Pages: 353 - 377, Volume 10, 2016

doi:10.3934/jmd.2016.10.353       Abstract        References        Full text (603.8K)           Related Articles

Jeffrey Diller - Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States (email)
Han Liu - Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States (email)
Roland K. W. Roeder - IUPUI Department of Mathematical Sciences, LD Building, Room 270, 402 North Blackford Street, Indianapolis, Indiana 46202, United States (email)

1 L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, 231 (2000), 5-45.       
2 L. Bartholdi, R. Grigorchuk and V. Nekrashevych, From fractal groups to fractal sets, in Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003, 25-118.       
3 E. Bedford, S. Cantat and K. Kim, Pseudo-automorphisms with no invariant foliation, J. Mod. Dyn., 8 (2014), 221-250.       
4 E. Bedford, M. Lyubich and J. Smillie, Polynomial diffeomorphisms of $C^2$. IV. The measure of maximal entropy and laminar currents, Invent. Math., 112 (1993), 77-125.       
5 J.-Y. Briend and J. Duval, Deux caractérisations de la mesure d'équilibre d'un endomorphisme de $ P^k(\mathbbC)$, Publ. Math. Inst. Hautes Études Sci., (2001), 145-159.       
6 S. Cantat, Dynamique des automorphismes des surfaces $K3$, Acta Math., 187 (2001), 1-57.       
7 S. Daurat, On the size of attractors in $\mathbbP^k$, Math. Z., 277 (2014), 629-650.       
8 H. De Thélin and G. Vigny, Entropy of meromorphic maps and dynamics of birational maps, Mém. Soc. Math. Fr. (N.S.), (2010), vi+98.       
9 J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math., 123 (2001), 1135-1169.       
10 J. Diller, R. Dujardin and V. Guedj, Dynamics of meromorphic maps with small topological degree I: From cohomology to currents, Indiana Univ. Math. J., 59 (2010), 521-561.       
11 J. Diller, R. Dujardin and V. Guedj, Dynamics of meromorphic maps with small topological degree III: Geometric currents and ergodic theory Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), 235-278.       
12 J. Diller, R. Dujardin and V. Guedj, Dynamics of meromorphic mappings with small topological degree II: Energy and invariant measure, Comment. Math. Helv., 86 (2011), 277-316.       
13 J. Diller and J.-L. Lin, Rational surface maps with invariant meromorphic two-forms, Math. Ann., 364 (2016), 313-352.       
14 T.-C. Dinh, Attracting current and equilibrium measure for attractors on $\mathbbP^k$, J. Geom. Anal., 17 (2007), 227-244.       
15 T.-C. Dinh, V.-A. Nguyên and T. Truong, Equidistribution for meromorphic maps with dominant topological degree, Indiana Univ. Math. J., 64 (2015), 1805-1828.       
16 T.-C. Dinh and N. Sibony, Une borne supêrieure pour l'entropie topologique d'une application rationnelle, Ann. of Math. (2), 161 (2005), 1637-1644.       
17 R. Dujardin, Hênon-like mappings in $\mathbbC^2$, Amer. J. Math., 126 (2004), 439-472.       
18 C. Favre and J. V. Pereira, Foliations invariant by rational maps, Math. Z., 268 (2011), 753-770.       
19 J. E. Fornaess and N. Sibony, Complex dynamics in higher dimension. II, in Modern Methods in Complex Analysis (Princeton, NJ, 1992), Ann. of Math. Stud., 137, Princeton Univ. Press, Princeton, NJ, 1995, 135-182.       
20 J. E. Fornaess and N. Sibony, Dynamics of $P^2$ (examples), in Laminations and Foliations in Dynamics, Geometry and Topology (Stony Brook, NY, 1998), Contemp. Math., 269, Amer. Math. Soc., Providence, RI, 2001, 47-85.       
21 J. E. Fornaess and B. Weickert, Attractors in $P^2$, in Several Complex Variables (Berkeley, CA, 1995-1996), Math. Sci. Res. Inst. Publ., 37, Cambridge Univ. Press, Cambridge, 1999, 297-307.       
22 R. I. Grigorchuk and A. Żuk, The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata, 87 (2001), 209-244.       
23 M. Gromov, Entropy, homology and semialgebraic geometry, Séminaire Bourbaki, Vol. 1985/86, Astérisque, No. 145-146 (1987), 5, 225-240.       
24 V. Guedj, Entropie topologique des applications méromorphes, Ergodic Theory Dynam. Systems, 25 (2005), 1847-1855.       
25 V. Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2), 161 (2005), 1589-1607.       
26 V. Guedj, Propriétés ergodiques des applications rationnelles, in Quelques aspects des systèmes dynamiques polynomiaux, Panor. Synthèses, 30, Soc. Math. France, Paris, 2010, 97-202.       
27 J. H. Hubbard and R. W. Oberste-Vorth, Hénon mappings in the complex domain. II. Projective and inductive limits of polynomials, in Real and Complex Dynamical Systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, 1995, 89-132.       
28 M. Jonsson, Hyperbolic dynamics of endomorphisms, Unpublished note: http://www.math.lsa.umich.edu/~mattiasj/notes/hypend.pdf.
29 M. Jonsson and B. Weickert, A nonalgebraic attractor in $\mathbbP^2$, Proc. Amer. Math. Soc., 128 (2000), 2999-3002.       
30 S. Kashner, R. Pérez and R. Roeder, Examples of rational maps of $\mathbb{CP}^2$ with equal dynamical degrees and no invariant foliation, Bulletin de la SMF, 144 (2016), 279-297.
31 A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, With a supplementary chapter by Katok and L. Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.       
32 B. P. Kitchens, Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts, Universitext, Springer-Verlag, Berlin, 1998.       
33 S. G. Krantz, Complex Analysis: The Geometric Viewpoint, Carus Mathematical Monographs, 23, Mathematical Association of America, Washington, DC, 1990.       
34 S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York, 1987.       
35 H. Liu, A Plane Rational Map with Chebyshev-like Dynamics, Ph.D. thesis, University of Notre Dame, 2014.       
36 W. Parry, Entropy and Generators in Ergodic Theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969.       
37 F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series, 371, Cambridge University Press, Cambridge, 2010.       
38 C. Sabot, Spectral properties of self-similar lattices and iteration of rational maps, Mém. Soc. Math. Fr. (N.S.), (2003), vi+104.       
39 G. Vigny, Hyperbolic measure of maximal entropy for generic rational maps of $\mathbbP^k$, Ann. Inst. Fourier (Grenoble), 64 (2014), 645-680.       

Go to top