Mathematical Biosciences and Engineering (MBE)

Type-dependent stochastic Ising model describing the dynamics of a non-symmetric feedback module
Pages: 981 - 998, Issue 5, October 2016

doi:10.3934/mbe.2016026      Abstract        References        Full text (1050.9K)           Related Articles

Manuel González-Navarrete - Institute of Mathematics and Statistics, Universidade de São Paulo, Rua do Matão, 1010, CEP 05508-090, São Paulo, Brazil (email)

1 U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, CRC Press, Boca Raton, 2007.       
2 U. Alon, Network motifs: Theory and experimental approaches, Nat. Rev. Genet., 8 (2007), 450-461.
3 F. Blanchini, E. Franco and G. Giordano, A Structural Classification of Candidate Oscillatory and Multistationary Biochemical Systems, Bull. Math. Bio., 76 (2014), 2542-2569.       
4 L. Chen and K. Aihara, Stability of genetic regulatory networks with time delay, IEEE T. Circuits-I, 49 (2002), 602-608.       
5 L. Chen, R. Wang, T. Kobayashi and K. Aihara, Dynamics of gene regulatory networks with cell division cycles, Phys. Rev. E, 70 (2004), 011909, 13 pp.       
6 X. Descombes and E. Zhizhina, The Gibbs fields approach and related dynamics in image processing, Condensed Matter Physics, 11 (2008), 293-312.
7 M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, 403 (2000), 335-338.
8 M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002), 1183-1186.
9 A. C. D. van Enter, R. Fernández, F. den Hollander and F. Redig, Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures, Commun. Math. Phys., 226 (2002), 101-130.       
10 B. Ermentrout and J. Rinzel, XPPAUT: X-Windows PhasePlane plus Auto, Computational Systems Neurobiology, (2012), 519-531, http://www.math.pitt.edu/ bard/xpp/xpp.html
11 S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986.       
12 T. d'Eysmond and F. Naef, Systems biology and modeling of circadian rhythms, in The Circadian Clock (ed. U. Albrecht), Springer-Verlag, New York, 12 (2009), 283-293.
13 R. Fernández, L. R. Fontes and E. J. Neves, Density-profile processes describing biological signaling networks: Almost sure convergence to deterministic trajectories, J. Stat. Phys., 136 (2009), 875-901.       
14 C. Godrèche, Rates for irreversible Gibbsian Ising models, J. Stat. Mech-Theory E., (2013), P05011, 30pp.       
15 C. Godrèche and A. J. Bray, Nonequilibrium stationary states and phase transitions in directed Ising models, J. Stat. Mech-Theory E., (2009), P12016.
16 E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Physik, 31 (1925), 253-258.
17 R. Kotecký and E. Olivieri, Droplet dynamics for asymmetric Ising model, J. Stat. Phys., 70 (1993), 1121-1148.       
18 C. Kulske and A. Le Ny, Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly broken symmetry, Commun. Math. Phys., 271 (2007), 431-454.       
19 T. G. Kurtz, Approximation of Population Processes, SIAM, Philadelphia, 1981.       
20 Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third Edition. Springer, New York, 2004.       
21 M. C. A. Leite and Y. Wang, Multistability, oscillations and bifurcations in feedback loops, Math. Biosc. and Eng., 7 (2010), 83-97.       
22 T. M. Liggett, Interacting Particle Systems, Springer, Berlin, 1985.       
23 J. R. G Mendonça and M. J. de Oliveira, Type-dependent irreversible stochastic spin models for genetic regulatory networks at the level of promotion-inhibition circuitry, Physica. A, 440 (2015), 33-41.       
24 A. Y. Mitrophanov and E. A. Groisman, Positive feedback in cellular control systems, Bioessays, 30 (2008), 542-555.
25 M. J. de Oliveira, Irreversible models with Boltzmann-Gibbs probability distribution and entropy production, J. Stat. Mech-Theory E., (2011), P12012. Erratum J. Stat. Mech-Theory E. (2013), E04001.
26 E. Olivieri and M. E. Vares, Large Deviations and Metastability, Cambridge University Press, New York, 2005.       
27 L. Perko, Differential Equations and Dynamical Systems, Third Edition. Springer, New York, 2001.       
28 N. Radde, The role of feedback mechanisms in biological network models - A tutorial, Asian J. Control, 13 (2011), 597-610.       
29 D. A. Rand, B. V. Shulgin, D. Salazar and A. J. Millar, Design principles underlying circadian clocks, J. Roy. Soc. Interface, 1 (2004), 119-130.
30 E. Schneidman, M. J. II Berry, R. Segev and W. Bialek, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, 440 (2006), 1007-1012.
31 V. Shahrezaei and P. S. Swain, The stochastic nature of biochemical networks, Curr. Opin. Biotech., 19 (2008), 369-374.
32 E. D. Sontag, Some new directions in control theory inspired by systems biology, Systems Biol., 1 (2004), 9-18.
33 P. S. Swain, M. B. Elowitz and E. D. Siggia, Intrinsic and extrinsic contributions to stochasticity in gene expression, P. Natl. Acad. Sci. USA, 99 (2002), 12795-12800.
34 H. Thorisson, Coupling, Stationarity and Regeneration, First Edition. Probability and its Applications, Springer, New York, 2001.
35 R. Toussaint and S. R. Pride, Interacting damage models mapped onto Ising and percolation models, Phys. Rev. E, 71 (2005), 046127.
36 J. Tyson and B. Novak, Functional motifs in biochemical reaction networks, Annu. Rev. Phys. Chem., 61 (2010), 219-240.
37 R. Wang, Z. Jing and L. Chen, Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems, B. Math. Biol., 67 (2005), 339-367.       
38 R. Wang, X.-M. Zhao and Z. Liu, Modeling and dynamical analysis of molecular networks, in Complex Sciences (ed. J. Zhou), Springer Berlin Heidelberg, 5 (2009), 2139-2148.

Go to top