Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers
Pages: 813  840,
Issue 4,
August
2016
doi:10.3934/mbe.2016019 Abstract
References
Full text (555.7K)
Related Articles
Martin Luther Mann Manyombe  Department of Mathematics, Faculty of Science, University of Yaounde 1, P.O. Box 812 Yaounde, Cameroon (email)
Joseph Mbang  Department of Mathematics, Faculty of Science, University of Yaounde 1, P.O. Box 812 Yaounde, Cameroon (email)
Jean Lubuma  Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa (email)
Berge Tsanou  Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa (email)
1 
H. Abboubakar, J. C. Kamgang, L. N. Nkamba, D. Tieudjo and L. Emini, Modeling the dynamics of arboviral diseases with vaccination perspective, Biomath, 4 (2015), 1507241, 30pp. 

2 
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991. 

3 
J. Arino, C. C. MCCluskey and P. Van Den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260276. 

4 
F. Brauer and C. CastilloChavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001. 

5 
C. CastilloChavez and B. Song, Dynamical model of tuberclosis and their applications, Math.Biosci.Eng, 1 (2004), 361404. 

6 
P. Van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 

7 
C. P. Farrington, On vaccine efficacy and reproduction numbers, Math. Biosci., 185 (2003), 89109. 

8 
G. Francois, M. Kew, P. Van Damme, M. J. Mphahlele and A. Meheus, Mutant hepatitis B viruses: A matter of academic interest only or a problem with farreaching implications, Vaccine, 19 (2001), 37993815. 

9 
M. Ghosh, P. Chandra, P. Sinha and J. B. Shukla, Modelling the spread of carrierdependent infectious diseases with environmental effect, Appl. Math. Comput., 152 (2004), 385402. 

10 
J. Gjorgjieva, K. Smith, G. Chowell, F. Sanchez, J. Snyder and C. CastilloChavez, The role of vaccination in the control of SARS, Math. Biosci. Eng., 2 (2005), 753769. 

11 
S. Goldstein, F. Zhou, S. C. Hadler, B. P. Bell, E. E. Mast and H. S. Margolis, A mathematical model to estimate global hepatitis B disease burden and vaccination impact, Int. J. Epidemiol., 34 (2005), 13291339. 

12 
B. Gomero, Latin Hypercube Sampling and Partial Rank Correlation Coefficient Analysis Applied to an Optimal Control Problem, Master Thesis, University of Tennessee, Knoxville, 2012. 

13 
A. B. Gumel and S. M. Moghadas, A qualitative study of a vaccination model with nonlinear incidence, Appl. Math. Comp, 143 (2003), 409419. 

14 
H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513525. 

15 
J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, Math. Biosci. Eng., 3 (2006), 89100. 

16 
D. Kalajdzievska and M. Y. Li, Modeling the effects of carriers on the transmission dynamics of infectious diseases, Math. Biosci. Eng., 8 (2011), 711722. 

17 
J. T. Kemper, The effects of asymptotic attacks on the spread of infectious disease: A deterministic model, Bull. Math. Bio., 40 (1978), 707718. 

18 
A. Korobeinikov, Global properties of sir and seir epidemic models with multiple parallel infectious stages, Bull. Math. Bio., 71 (2009), 7583. 

19 
J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. 

20 
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol, 254 (2008), 178196. 

21 
G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, HepatitisB virus edemicity: Heterogeneity, catastrophic dynamics and control, Nat. Med., 7 (2001), 617624. 

22 
R. Naresh, S. Pandey and A. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects, Nonlinear Analysis: Modelling and Control, 13 (2008), 331350. 

23 
M. M. Riggs, A. K. Sethi, T. F. Zabarsky, E. C. Eckstein, R. L. Jump and C. J. Donskey, Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium diffcile strains among longterm care facility residents, Clin. Infect. Dis., 45 (2007), 992998. 

24 
P. Roumagnac, et al., Evolutionary history of Salmonella typhi, Science, 314 (2006), 13011304. 

25 
C. L. Trotter, N. J. Gay and W. J. Edmunds, Dynamic models of meningococcal carriage, disease, and the impact of serogroup C conjugate vaccination, Am. J. Epidemiol., 162 (2005), 89100. 

26 
S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744752. 

27 
L. Zou, W. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China, J. Theor. Biol., 262 (2010), 330338. 

28 
"The ABCs of Hepatitis", Center for Disease Control and Prevention (CDC), 2015. Available from: http://www.cdc.gov/hepatitis/Resources/Professionals/PDFs/ABCTable.pdf 

29 
WHO, "Fact Sheet N$^o$ 204 on Hepatitis B", July 2015. Available from: http://www.who.int/mediacentre/factsheets/fs204/en/ 

Go to top
