`a`
Mathematical Biosciences and Engineering (MBE)
 

Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation
Pages: 787 - 812, Issue 4, August 2016

doi:10.3934/mbe.2016018      Abstract        References        Full text (684.4K)           Related Articles

Jean-Jacques Kengwoung-Keumo - Department of Mathematical Sciences, Cameron University, 2800 West Gore Boulevard, Lawton, OK 73505, United States (email)

1 M. An, D. Liu, I. Johnson and J. Lovett, Mathematical modelling of allelopathy. II. The dynamics of allelochemicals from living plants in the environment, Ecol. Model., 161 (2003), 53-66.
2 H. M. Anderson, V. Hutson and R. Law, On the conditions for persistence of species in ecological communities, Amer. Natur., 139 (1992), 663-668.
3 R. Aris and A. E. Humphrey, Dynamics of a chemostat in which two organisms compete for a common substrate, Biotechnol. Bioeng., 19 (1977), 707-723.
4 M. M. Ballyk and G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources, Math. Biosci., 118 (1993), 127-180.       
5 E. Beretta, Bischi and G. F. Solimano, Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol., 28 (1990), 99-111.       
6 B. Boon and H. Laudelout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, Biochem. J., 85 (1962), 440-447.
7 G. J. Butler and G. S. K. Wolkowicz, Predator-mediated competition in the chemostat, J. Math. Biol., 24 (1986), 167-191.       
8 G. J. Butler and G. S. K. Wolkowicz, Exploitative competition in a chemostat for two complementary, and possibly inhibitory, resources, Math. Biosci., 83 (1987), 1-48.       
9 S. Chakraborty and J. Chattopadhyay, Nutrient-phytoplankton-zooplankton dynamics in the presence of additional food source- A mathematical study, J. Biol. Syst., 16 (2008), 547-564.
10 P. Chesson, J. M. Chase, P. A. Abrams, J. P. Grover, S. Diehl, R. D. Holt, S. A. Richards, R. M. Nisbet and T. J. Case, The interaction between predation and competition: A review and synthesis, Eco. Let., 5 (2002), 302-315.
11 A. M. Edwards and J. Brindley, Zooplankton mortality and the dynamical behaviour of plankton population models, Bull. Math. Biol., 6 (1999), 303-339.
12 A. M. Edwards, Adding detritus to a nutrient-phytoplankton-zooplankton model: A dynamical-systems approach, J. Plankton Res., 23 (2001), 389-413.
13 J. P. Grover and R. D. Holt, Disentangling resource and apparent competition: Realistic models for plant-herbivore communities, J. Theor. Biol., 191 (1998), 353-376.
14 T. G. Hallam, On persistence of aquatic ecosystems, In: Anderson, N. R., Zahurance, B. G. (eds). Oceanic Sound Scattering Predication, 1977, 749-765. New York: Plenum.
15 T. G. Hallam, Controlled persistence in rudimentary plankton models, In: Avula, J. R. (eds). Math. Model., 4 (1977), 2081-2088. Rolla: University of Missouri Press.       
16 T. G. Hallam, Structural Sensitivity of grazing formulation in nutrient controlled plankton models, J. Math. Biol., 5 (1978), 261-280.       
17 S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretical forecast outcomes, Sci., 207 (1980), 1491-1493.
18 G. Hardin, The competitive exclusion principle, Sci., New series, 131 (1960), 1292-1297.
19 R. D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition, Amer. Natur., 144 (1994), 741-771.
20 S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.       
21 S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763.       
22 S. R. J. Jang and J. Baglama, Nutrient-plankton models with nutrient recycling, Comput. Math. Appl., 49 (2005), 375-378.       
23 J. L. Jost, S. F. Drake, A. G. Fredrickson and M. Tsuchiya, Interaction of tetrahymena pyriformis, escherichia, coli, azotobacter vinelandii and glucose in a minimal medium, J. Bacteriol., 113 (1976), 834-840.
24 J.-J. Kengwoung-Keumo, Dynamics of two phytoplankton populations under predation, J. Math. Bio. Eng., 11 (2014), 1319-1336.       
25 J. A. León and D. B. Tumpson, Competition between two species for two complementary or substitutable resources, J. Theor. Biol., 50 (1975), 185-201.
26 B. Li and Y. Kuang, Simple Food Chain in a Chemostat with Distinct Removal Rates, J. Math. Anal. Appl., 242 (2000), 75-92.       
27 J. Maynard-Smith, Models in Ecology, Cambridge University Press, 1974.
28 R. K. Miller, Nonlinear Volterra Equation, W. A. Benjamin, N.Y., 1971.       
29 H. Molisch, Der Einfluss Einer Pflanze Auf Die Andere-Allelopathie, Fischer, Jena, 1937.
30 J. Monod, Recherche Sur La Croissance Des Cultures Bacteriennes, Hermann et Cie., Paris, 1942.
31 B. Mukhopadhyay and R. Bhattacharryya, Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity, Ecol. Model., 198 (2006), 163-173.
32 M. Nakamaru and Y. Iwasa, Competition by allelopathy proceeds in travelling waves: colicin-immune strain aids colicin-sensitive strain, Theor. Popul. Biol., 57 (2000), 131-144.
33 L. Perko, Differential Equations and Dynamical Systems, Third Edition, Springer, 2001.       
34 M. J. Piotrowska, U. Foryś and M. Bodnar, A simple model of carcinogenic mutations with time delay and diffusion, Math. Biosci. Eng., 10 (2013), 861-872.       
35 D. Rapport, An optimization model of food selection, Amer. Natur., 105 (1971), 575-587.
36 E. L. Rice, Allelopathy, Academic Press, Inc. 1984.
37 G. A. Riley, A mathematical model of regional variations in plankton, Limnol. Oceanog., 10 (Suppl.) (1965), R202-R215.
38 S. Roy, The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy, Theor. Popul. Biol., 75 (2009), 68-75.
39 P. K Roy, A. N. Chatterjee, D. Greenhalgh and D. Khan, Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model, Nonlinear Anal-Real., 14 (2013), 1621-1633.       
40 S. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling, J. Math. Biol., 31 (1993), 633-654.       
41 S. Ruan, Oscillations in plankton models with recycling, J. Theor. Biol., 208 (2001), 15-26.
42 A. Sinkkonen, Modelling the effect of autotoxicity on density-dependent phytotoxicity, J. Theor. Biol., 244 (2007), 218-227.       
43 H. L. Smith and P. Waltman, The theory of the chemostat: Dynamics of microbial competition, Vol. 13 of Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, U.K., 1995.       
44 J. Solé, E. García-Ladona, P. Ruardij and M. Estrada, Modelling allelopathy among marine algae, Ecol. Model., 183 (2005), 373-384.
45 H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.       
46 H. V. Thurman, Introductory Oceanography, 8th edition, Englewood Cliffs, NJ: Prentice-Hall, 1997.
47 R. Whittaker and P. Feeny, Allolechemicals: chemical interactions between species, Sci., 171 (1971), 757-770.
48 G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates, J. Appl. Math., 52 (1992), 222-233.       
49 R. D. Yang and A. E. Humphrey, Dynamics and steady state studies of phenol biodegradation in pure and mixed cultures, Biotechnol. Bioeng., 17 (1975), 1211-1235.

Go to top