A twostrain TB model with multiple
latent stages
Pages: 741  785,
Issue 4,
August
2016
doi:10.3934/mbe.2016017 Abstract
References
Full text (1301.6K)
Related Articles
Azizeh Jabbari  Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran (email)
Carlos CastilloChavez  Simon A Levin Mathematics, Computational and Modeling Sciences Center, Arizona State University, PO Box 871904, Tempe, AZ 85287, United States (email)
Fereshteh Nazari  Simon A Levin Mathematics, Computational and Modeling Sciences Center, Arizona State University, PO Box 871904, Tempe, AZ 85287, United States (email)
Baojun Song  Department of Mathematical Sciences, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States (email)
Hossein Kheiri  Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran (email)
1 
J. P. Aparicio, A. F. Capurro and C. CastilloChavez, Markers of disease evolution: The case of tuberculosis, J Theor Biol, 215 (2002), 227237. 

2 
J. P. Aparicio, A. F. Capurro and C. CastilloChavez, Longterm dynamics and reemergence of tuberculosis, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, SpringerVerlag. Edited by Sally Blower, Carlos CastilloChavez, Denise Kirschner, Pauline van den Driessche and AbdulAziz Yakubu, 125 (2002), 351360. 

3 
J. P. Aparicio, A. F. Capurro and C. CastilloChavez, Transmission and dynamics of tuberculosis on generalized households, J Theor Biol, 206 (2000), 327341. 

4 
J. P. Aparicio and C. CastilloChavez, Mathematical modelling of tuberculosis epidemics, Math Biosci Eng, 6 (2009), 209237. 

5 
J. H. Bates, W. Stead and T. A. Rado, Phage type of tubercle bacilli isolated from patients with two or more sites of organ involvement, Am Rev Respir Dis, 114 (1976), 353358. 

6 
B. R. Bloom, Tuberculosis: Pathogenesis, Protection, and Control, ASM Press, Washington, D.C., 1994. 

7 
S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopwell, M. A. Sanchez and A. R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nature Medicine, 1 (1995), 815821. 

8 
F. Brauer and C. CastilloChavez, Mathematical Models for Communicable Diseases, SIAM, 2013. 

9 
C. CastilloChavez, Chalenges and opportunities in mathematical and theoretical biology and medicine: foreword to volume 2 (2013) of Biomath, Biomath, 2 (2013), 1312319, 2pp. 

10 
C. CastilloChavez and Z. Feng, To treat or not to treat: The case of tuberculosis, J Math Biol, 35 (1997), 629656. 

11 
C. CastilloChavez and Z. Feng, Mathematical models for the disease dynamics of tuberculosis, Advances in Mathematical Population Dynamics  Molecules, Cells, and Man O. Arino, D. Axelrod, M. Kimmel, (eds), World Scientific Press, (1998), 629656. 

12 
C. CastilloChavez and B. Song, Dynamical models of tuberculosis and their applications, Math Biosci Eng, 1 (2004), 361404. 

13 
C. Y. Chiang and L. W. Riley, Exogenous reinfection in tuberculosis, Lancet Infect Dis, 5 (2005), 629636. 

14 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180 (2002), 2948. 

15 
Z. Feng, C. CastilloChavez and A. F. Capurro, A model for tuberculosis with exogenous reinfection, Theor Popul Biol, 57 ( 2000), 235247. 

16 
Z. Feng, W. Huang and C. CastilloChavez, On the role of variable latent periods in mathematical models for tuberculosis, Journal of Dynamics and Differential Equations, 13 (2001), 425452. 

17 
Z. Feng, D. Xu and H. Zhao, Epidemiological models with nonexponentially distributed disease stages and applications to disease control, Bulletin of Mathematical Biology, 69 (2007), 15111536. 

18 
Antibioticresistant Diseases Pose 'Apocalyptic' Threat, Top Expert Says, 2013. Available from: http://www.theguardian.com/society/2013/jan/23/antibioticresistantdiseasesapocalypticthreat, 

19 
Guidelines on the Management of Latent Tuberculosis Infection, 2015. Available from: http://apps.who.int/medicinedocs/documents/s21682en/s21682en.pdf. 

20 
H. M. Hethcote, Qualitative analysis for communicable disease models, Math Biosc, 28 (1976), 335356. 

21 
H. M. Hethcote, The Mathematics of infectious diseases, SIAM Rev, 42 (2000), 599653. 

22 
J. M. Hyman and J. Li, An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations, Mathematical Biosciences, 167 (2000), 6586. 

23 
E. IbargüenMondragón and L. Esteva, On the interactions of sensitive and resistant Mycobacterium tuberculosis to antibiotics, Math Biosc, 246 (2013), 8493. 

24 
V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker Inc, New York and Basel, 41, 1989. 

25 
M. L. Lambert, E. Hasker, A. Van Deun, D. Roberfroid, M. Boelaert and P. Van Der Stuyft, Recurrence in tuberculosis: Relapse or reinfection?, Lancet Infect Dis, 3 (2003), 282287. 

26 
E. Nardell, B. Mc Innis, B. Thomas and S. Weidhaas, Exogenous reinfection with tuberculosis in a shelter for the homeless, N Engl J Med, 315 (1986), 15701575. 

27 
E. Oldfield and X. Feng, Resistanceresistant antibiotics, Trends in Pharmacological Sciences, 35 (2014), 664674. 

28 
T. C. Porco and S. M. Blower, Quantifying the intrinsic transmission dynamics of tuberculosis, Theoretical Population Biology, 54 (1998), 117132. 

29 
J. W. Raleigh and R. H. Wichelhausen, Exogenous reinfection with mycobacterium tuberculosis confirmed by phage typing, Am Rev Respir Dis, 108 (1973), 639642. 

30 
J. W. Raleigh, R. H. Wichelhausen, T. A. Rado and J. H. Bates, Evidence for infection by two distinct strains of mycobacterium tuberculosis in pulmonary tuberculosis: Report of 9 cases, Am Rev Respir Dis, 112 (1975), 497503. 

31 
M. Raviglione, DrugResistant TB Surveillance and Response, Global Tuberculosis Report 2014, 2014. Available from: http://www.who.int/tb/publications/global_report/gtbr14_supplement_web_v3.pdf. 

32 
L. W. Roeger, Z. Feng and C. CastilloChavez, Modeling TB and HIV coinfections, Math Biosci Eng, 6 (2009), 815837. 

33 
G. Shen, Z. Xue, X. Shen, B. Sun, X. Gui, M. Shen, J. Mei and Q. Gao, Recurrent tuberculosis and exogenous reinfection, Shanghai, China, Emerging Infectious Disease, 12 (2006), 11761178. 

34 
P. M. Small, R. W. Shafer, P. C. Hopewell, P. C. Singh, M. J. Murphy, E. Desmond , M. F. Sierra and G. K. Schoolnik, Exogenous reinfection with multidrugresistant mycobacterium tuberculosis in patients wit advanced HIV infection, N Engl J Med, 328 (1993), 11371144. 

35 
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, 1995. 

36 
B. Song, Dynamical Epidemic Models and Their Applications, Thesis (Ph.D.)Cornell University, 2002. 

37 
B. Song, C. CastilloChavez and J. P. Aparicio, Tuberculosis models with fast and slow dynamics: The role of close and casual contacts, Mathematical Biosciences, 180 (2002), 187205. 

38 
B. Song, C. CastilloChavez and J. P. Aparicio, Global dynamics of tuberculosis models with density dependent demography, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models Methods and Theory (eds. C. CastilloChavez, S. Blower, P. van den Driessche, D. Kirschner, A. A. Yakubu), Springer, New York, IMA, 126 (2002), 275294. 

39 
W. W. Stead, The pathogenesis of pulmonary tuberculosis among older persons, Am Rev Respir Dis, 91 (1965), 81122. 

40 
T. C. Porco and S. M. Blower, Quantifying the intrinsic transmission dynamics of tuberculosis, Theoretical Population Biology, 54 (1998), 117132. 

41 
X. Wang, Backward Bifurcation in a Mathematical Model for Tuberculosis with Loss of Immunity, Ph.D. Thesis, Purdue University, 2005. 

42 
X. Wang, Z. Feng, J. P. Aparicio and C. CastilloChavez, On the dynamics of reinfection: The case of tuberculosis, BIOMAT 2009, International Symposium on Mathematical and Computational Biology, (2010), 304330. 

43 
Global Tuberculosis Control: Who Report 2010, 2010. Available from: http://reliefweb.int/sites/reliefweb.int/files/resources/F530290AD0279399C12577D8003E9D65Full_Report.pdf. 

Go to top
