`a`
Mathematical Biosciences and Engineering (MBE)
 

Competition for a single resource and coexistence of several species in the chemostat
Pages: 631 - 652, Issue 4, August 2016

doi:10.3934/mbe.2016012      Abstract        References        Full text (691.9K)           Related Articles

Nahla Abdellatif - Université de Tunis El Manar, ENIT, LAMSIN, BP 37, Le Belvédère, 1002 Tunis, Tunisia (email)
Radhouane Fekih-Salem - Université de Tunis El Manar, ENIT, LAMSIN, BP 37, Le Belvédère, 1002 Tunis, Tunisia (email)
Tewfik Sari - IRSTEA, UMR Itap, 361 rue Jean-François Breton, 34196 Montpellier, France, and Université de Haute Alsace, LMIA, 4 rue des frères Lumière, 68093 Mulhouse, France (email)

1 R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326.
2 C. K. Essajee and R. D. Tanner, The effect of extracellular variables on the stability of the continuous baker's yeast-ethanol fermentation process, Process Biochem., 14 (1979), 16-25.
3 R. Fekih-Salem, Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat, Ph.D thesis, University of Montpellier 2 and University of Tunis el Manar, 2013. https://tel.archives-ouvertes.fr/tel-01018600.
4 R. Fekih-Salem, J. Harmand, C. Lobry, A. Rapaport and T. Sari, Extensions of the chemostat model with flocculation, J. Math. Anal. Appl., 397 (2013), 292-306.       
5 R. Fekih-Salem, T. Sari and N. Abdellatif, Sur un modèle de compétition et de coexistence dans le chémostat, ARIMA J., 14 (2011), 15-30.       
6 B. Haegeman, C. Lobry and J. Harmand, Modeling bacteria flocculation as density-dependent growth, AIChE J., 53 (2007), 535-539.
7 B. Haegeman and A. Rapaport, How flocculation can explain coexistence in the chemostat, J. Biol. Dyn., 2 (2008), 1-13.       
8 J. K. Hale and A. S. Somolinas, Competition for fluctuating nutrient, J. Math. Biol., 18 (1983), 255-280.       
9 J. Harmand and J. J. Godon, Density-dependent kinetics models for a simple description of complex phenomena in macroscopic mass-balance modeling of bioreactors, Ecol. Modell., 200 (2007), 393-402.
10 S. B. Hsu, A competition model for a seasonally fluctuating nutrient, J. Math. Biol., 9 (1980), 115-132.       
11 P. De Leenheer, D. Angeli and E. D. Sontag, Crowding effects promote coexistence in the chemostat, J. Math. Anal. Appl., 319 (2006), 48-60.       
12 C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of $n$ species in the presence of a single resource, C. R. Biol., 329 (2006), 40-46.
13 C. Lobry and F. Mazenc, Effect on persistence of intra-specific competition in competition models, Electron. J. Diff. Eqns., 125 (2007), 1-10.       
14 C. Lobry, F. Mazenc and A. Rapaport, Persistence in ecological models of competition for a single resource, C. R. Acad. Sci. Paris, Ser. I, 340 (2005), 199-204.       
15 C. Lobry, A. Rapaport and F. Mazenc, Sur un modèle densité-dépendant de compétition pour une ressource, C. R. Biol., 329 (2006), 63-70.
16 A. Rapaport and J. Harmand, Biological control of the chemostat with nonmonotonic response and different removal rates, Math. Biosci. Eng., 5 (2008), 539-547.       
17 S. Ruan, A. Ardito, P. Ricciardi and D. L. DeAngelis, Coexistence in competition models with density-dependent mortality, C. R. Biol., 330 (2007), 845-854.
18 T. Sari, A Lyapunov function for the chemostat with variable yields, C. R. Acad. Sci. Paris Ser. I, 348 (2010), 747-751.       
19 T. Sari, Competitive exclusion for chemostat equations with variable yields, Acta Appl. Math., 123 (2013), 201-219.       
20 T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Math. Biosci. Eng., 8 (2011), 827-840.       
21 H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.       
22 G. Stephanopoulos, A. G. Frederickson and R. Aris, The growth of competing microbial populations in a CSTR with periodically varying inputs, AIChE J., 25 (1979), 863-872.       
23 G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM J. Appl. Math., 52 (1992), 222-233.       
24 G. S. K. Wolkowicz and Z. Lu, Direct interference on competition in a chemostat, J. Biomath, 13 (1998), 282-291.       
25 G. S. K. Wolkowicz and X. Q. Zhao, $N$-species competition in a periodic chemostat, Differential Integral Equations, 11 (1998), 465-491.       

Go to top