`a`
Journal of Modern Dynamics (JMD)
 

Jonquières maps and $SL(2;\mathbb{C})$-cocycles
Pages: 23 - 32, Volume 10, 2016

doi:10.3934/jmd.2016.10.23      Abstract        References        Full text (173.6K)           Related Articles

Julie Déserti - Institut de Mathématiques de Jussieu- Paris Rive Gauche, UMR 7586, Université Paris Diderot, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France (email)

1 A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.       
2 A. Avila, S. Jitomirskaya and C. Sadel, Complex one-frequency cocycles, J. Eur. Math. Soc. (JEMS), 16 (2014), 1915-1935.       
3 A. Beauville, Complex Algebraic Surfaces, Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid, Second edition, London Mathematical Society Student Texts, 34, Cambridge University Press, Cambridge, 1996.       
4 E. Bedford and K. Kim, Periodicities in linear fractional recurrences: Degree growth of birational surface maps, Michigan Math. J., 54 (2006), 647-670.       
5 E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Linear fractional recurrences, J. Geom. Anal., 19 (2009), 553-583.       
6 E. Bedford and K. Kim, Continuous families of rational surface automorphisms with positive entropy, Math. Ann., 348 (2010), 667-688.       
7 E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Rotations domains, Amer. J. Math., 134 (2012), 379-405.       
8 J. Blanc and J. Déserti, Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14 (2015), 507-533.       
9 S. Cantat, Dynamique des automorphismes des surfaces projectives complexes, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 901-906.       
10 S. Cantat, Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2), 174 (2011), 299-340.       
11 D. Cerveau and J. Déserti, Centralisateurs dans le groupe de Jonquières, Michigan Math. J., 61 (2012), 763-783.       
12 J. Déserti, Expériences sur certaines transformations birationnelles quadratiques, Nonlinearity, 21 (2008), 1367-1383.       
13 J. Déserti and J. Grivaux, Automorphisms of rational surfaces with positive entropy, Indiana Univ. Math. J., 60 (2011), 1589-1622.       
14 J. Diller, Cremona transformations, surface automorphisms, and plane cubics, With an appendix by I. Dolgachev, Michigan Math. J., 60 (2011), 409-440.       
15 J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math., 123 (2001), 1135-1169.       
16 M. H. Gizatullin, Rational $G$-surfaces, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 110-144, 239.       
17 M. Gromov, On the entropy of holomorphic maps, Enseign. Math. (2), 49 (2003), 217-235.       
18 C. T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 49-89.       
19 H. Rüssmann, Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition, Ergodic Theory Dynam. Systems, 22 (2002), 1551-1573.       
20 Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.       

Go to top