Bifurcation analysis of HIV1 infection model with celltocell transmission and immune response delay
Pages: 343  367,
Issue 2,
April
2016
doi:10.3934/mbe.2015006 Abstract
References
Full text (13198.9K)
Related Articles
Jinhu Xu  School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China (email)
Yicang Zhou  School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China (email)
1 
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV1 dynamics in vivo, SIAM Rev., 41 (1999), 344. 

2 
P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 13131327. 

3 
M. S. Ciupe, B. L. Bivort, D. M. Bortz and P. W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci., 200 (2006), 127. 

4 
V. Herz, S. Bonhoeffer and R. Anderson, et al., Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus delay, Proc. Natl. Acad. Sci. USA, 93 (1996), 72477251. 

5 
K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci., 235 (2012), 98109. 

6 
R. V. Culshaw and S. G. Ruan, A delaydifferential equation model of HIV infection of $CD4^+$ Tcells, Math. Biosci., 165 (2000), 2739. 

7 
J. Mittler, B. Sulzer, A. Neumann and A. S. Perelson, Influence of delayed virus production on viral dynamics in HIV1 infected patients, Math. Biosci., 152 (1998), 143163. 

8 
P. W. Nelson, J. Murray and A. S. Perelson, A model of HIV1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201215. 

9 
M. Y. Li and H. Shu, Global dynamics of an inhost viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 14921505. 

10 
S. Liu and L. Wang, Global stability of an HIV1 model with distributed intracellular delays and a combination therapy, Math. Biosci. Eng., 7 (2010), 675685. 

11 
R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of celltocell spread of HIV1 that includes a time delay, J. Math. Biol., 46 (2003), 425444. 

12 
H. Zhu and X. Zou, Dynamics of a HIV1 infection model with cellmediated immume response and intracellular delay, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 513526. 

13 
H. Y. Zhu, Y. Luo and M. L. Chen, Stability and Hopf bifurcation of a HIV infection model with CTLresponse delay, Comput. Math. Appl., 62 (2011), 30913102. 

14 
Y. Wang, Y. Zhou, J. Wu and J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model, Math. Biosci., 219 (2009), 104112. 

15 
M. Y. Li and H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLVI infection, Bull. Math. Biol., 73 (2011), 17741793. 

16 
H. Song, W. Jiang and S. Liu, Virus dynamics model with intracellular delays and immune response, Math. Biosci. Eng.,12 (2015), 185208. 

17 
M. Sourisseau, N. SolFoulon, F. Porrot, F. Blanchet and O. Schwartz, Inefficient human immunodeficiency virus replication in mobile lymphocytes, J. Virol., 81 (2007), 10001012. 

18 
D. S. Dimitrov, R. L. Willey and H. Sato, et al., Quantitation of human immunodeficiency virus type 1 infection kinetics, J. Virol., 67 (1993), 21822190. 

19 
H. Sato, J. Orenstein, D. S. Dimitrov and M. A. Martin, Celltocell spread of HIV1 occurs with minutes and may not involve the participation of virus particles, Virology, 186 (1992), 712724. 

20 
S. Gummuluru, C. M. Kinsey and M. Emerman, An in vitro rapidturnover assay for human immunodeficiency virus type 1 replication selects for celltocell spread of virus, J. Virol., 74 (2000), 1088210891. 

21 
J. Witteveldt, M. J. Evans and J. Bitzegeio, et al., CD81 is dispensable for hepatitis C virus celltocell transmission in hepatoma cells, J. Gen. Virol., 90 (2009), 4858. 

22 
J. Lupberger, J. M. B. Zeisel and F. Xiao et al., EGFR and EphA2 are hepatitis C virus host entry factors and targets for antiviral therapy, Nat. Med., 17 (2011), 589595. 

23 
I. Fofana, F. Xiao and C. Thumann, et al., A novel monoclonal antiCD81 antibody produced by genetic immunization efficiently inhibits Hepatitis C virus cellcell transmission, PloS one., 8 (2013), e64221. 

24 
S. Imai, J. Nishikawa ang K. Takada, Celltocell contact as an efficient mode of EpsteinBarr virus infection of diverse human epithelial cells, J. Virol., 72 (1998), 43714378. 

25 
Q. J. Sattentau, The direct passage of animal viruses between cells, Current opinion in virology, 1 (2011), 396402. 

26 
S. Benovic, T. Kok, A. Stephenson and J. McInnes, et al., De novo reverse transcription of HTLV1 following celltocell transmission of infection, Virology., 244 (1998), 294301. 

27 
M. L. Dustin and J. A. Cooper, The immunological synapse and the actin cytoskeleton: Molecular hardware for T cell signaling, Nat Immunol., 1 (2000), 2329. 

28 
N. Martin and Q. Sattentau, Celltocell HIV1 spread and its implications for immune evasion, Curr Opin HIV AIDS., 4 (2009), 143149. 

29 
Q. Sattentau, Avoiding the void: Celltocell spread of human viruses, Nat Rev Microbiol, 6 (2008), 815826. 

30 
G. Carloni, A. Crema and M. B Valli, et al., HCV infection by celltocell transmission: Choice or necessity?, Current molecular medicine., 12 (2012), 8395. 

31 
X. L. Lai and X. F. Zou, Modeling HIV1 virus dynamics with both virustocell infection and celltocell transmission, SIAM J. Appl. Math., 74 (2014), 898917. 

32 
X. L. Lai and X. F. Zou, Modeling celltocell spread of HIV1 with logistic target cell growth, J. Math. Anal. Appl., 426 (2015), 563584. 

33 
M. Nowak and C. Bangham, Population dynamics of immune responses to persistent viruses, Science., 272 (1996), 7479. 

34 
K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune response, Comput. Math. Appl., 51 (2006), 15931610. 

35 
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, SpringerVerlag, 1993. 

36 
W. M. Hirsch, H. Hanisch and J. P. Gabril, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior, Commun. Pure. Appl. Math., 38 (1985), 733753. 

37 
J. Hale and W. Z. Huang, Global geometry of the stable regions for two delay differential equations, J. Math. Anal. Appl., 178 (1993), 344362. 

38 
S. Busenberg and K. L. Cooke, Vertically Transmitted Diseases: Models and Dynamics, vol. 23. Biomathematics. New York: Springer, 1993. 

39 
X. Li and J. Wei, On the zeros of a fourth degree exponential polynomial with applications to an eural network model with delays, Chaos Solitions Fractals., 26 (2005), 519526. 

40 
J. Hale, Theory of Function Differential Equations, Springer, Heidelberg, 1977. 

41 
B. D. Hassard, N. D. Kazariniff and Y. H. Wan, Theory and Application of Hopf Bifurcation, London math society lecture note series, vol. 41. Cambridge University Press, 1981. 

Go to top
