`a`
Kinetic and Related Models (KRM)
 

Global existence of weak solution to the free boundary problem for compressible Navier-Stokes
Pages: 75 - 103, Issue 1, March 2016

doi:10.3934/krm.2016.9.75      Abstract        References        Full text (504.6K)           Related Articles

Zhenhua Guo - Center for Nonlinear Studies and School of Mathematics, Northwest University, Xi'an 710069, China (email)
Zilai Li - School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China (email)

1 Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.       
2 H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Differ. Eqs., 190 (2003), 504-523.       
3 H. J. Choe and H. Kim, Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids, Math. Methods Appl., 28 (2005), 1-28.       
4 E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.       
5 E. Feireisl, On the motion of a viscous, compressible, and heat conducting fluid, Indiana Univ. Math. J., 53 (2004), 1705-1738.       
6 E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.       
7 Z. H. Guo, H. L. Li and Z. P. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Commun. Math. Phys., 309 (2012), 371-412.       
8 D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data, Trans. Amer. Math. Soc., 303 (1987), 169-181.       
9 D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large discontinuous initial data, Indiana Univ. Math. J., 41 (1992), 1225-1302.       
10 D. Hoff, Global existence of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Diff. Eqs., 120 (1995), 215-254.       
11 D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Rat. Mech. Anal., 132 (1995), 1-14.       
12 D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces, Arch. Ration. Mech. Anal., 173 (2004), 297-343.       
13 D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.       
14 X. D. Huang, J. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.       
15 S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581.       
16 H. Kong, Global Existence of Spherically Symmetric Weak Solutions to the Free Boundary Value Problem of 3D Isentropic Compressible Navier-Stokes Equations, Master thesis, Capital Normal University in Beijing, 2014.
17 A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.       
18 P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2. Compressible models, Oxford University Press, New York, 1998.       
19 T. Luo, Z. P. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.       
20 A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heatconductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.
21 J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497.       
22 M. Okada, Free boundary problem for the equation of one dimensional motion of viscous gas, Japan J. Appl. Math., 6 (1989), 161-177.       
23 M. Okada and T. Makino, Free boundary problem for the equation of spherically Symmetrical motion of viscous gas, Japan J. Appl. Math., 10 (1993), 219-235.       
24 R. Salvi and I. Straškraba, Global existence for viscous compressible fluids and their behavior as $ t\rightarrow\infty$, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 40 (1993), 17-51.       
25 J. Serrin, On the uniqueness of compressible fluid motion, Arch. Rational. Mech. Anal., 3 (1959), 271-288.       
26 Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.       

Go to top