`a`
Kinetic and Related Models (KRM)
 

Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules
Pages: 1 - 49, Issue 1, March 2016

doi:10.3934/krm.2016.9.1      Abstract        References        Full text (680.1K)           Related Articles

Kleber Carrapatoso - CEREMADE, Université Paris-Dauphine, UMR CNRS 7534, F-75775 Paris, France (email)

1 A. A. Arsen'ev and O. E. Buryak, On the connection betwenn a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation, Math. USSR Sbornik, 69 (1991), 465-478.       
2 A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, in Mathematical physics reviews, Vol. 7, Soviet Sci. Rev. Sect. C Math. Phys. Rev., Harwood Academic Publ., Chur, 7 (1988), 111-233.       
3 A. V. Boblylev, M. Pulvirenti and C. Saffirio, From particle systems to the Landau equation: A consistency result, Comm. Math. Phys., 319 (2013), 683-702.       
4 E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model, Kinet. Relat. Models, 3 (2010), 85-122.       
5 K. Carrapatoso, Quantitative and qualitative Kac's chaos on the Boltzmann's sphere, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 993-1039.       
6 P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Mod. Meth. in Appl. Sci., 2 (1992), 167-182.       
7 L. Desvillettes, On the asymptotics of the Boltzmann equation when the collisions become grazing, Transp. Theory and Stat. Phys., 21 (1992), 259-276.       
8 A. Einav, A counter-example to Cercignani's conjecture for the d-dimensional Kac model, J. Statist. Phys., 148 (2012), 1076-1103.       
9 J. Fontbona, H. Guérin and S. Méléard, Measurability of optimal transportation and convergence rate for Landau type interacting particle systems, Probab. Theory Related Fields, 143 (2009), 329-351.       
10 N. Fournier, Particle approximation of some Landau equations, Kinet. Relat. Models, 2 (2009), 451-464.       
11 I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013.       
12 H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2 (1949), 331-407.       
13 H. Guérin, Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach, Stochastic Process. Appl., 101 (2002), 303-325.       
14 H. Guérin, Solving Landau equation for some soft potentials through a probabilistic approach, Ann. Appl. Probab., 13 (2003), 515-539.       
15 M. Hauray and S. Mischler, On Kac's chaos and related problems, J. Funct. Anal., 266 (2014), 6055-6157.       
16 R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum, Comm. Math. Phys., 105 (1986), 189-203.       
17 M. Kac, Foundations of kinetic theory, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, vol. III, University of California Press, Berkeley and Los Angeles, 1956, 171-197.       
18 M. Kiessling and C. Lancellotti, On the master equation approach to kinetic theory: Linear and nonlinear Fokker-Planck equations, Transport Theory and Statistical Physics, 33 (2004), 379-401.       
19 O. E. Lanford III, Time evolution of large classical systems, in Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), Springer, Berlin, Lecture Notes in Phys., 38 (1975), 1-111.       
20 H. P. McKean Jr., An exponential formula for solving Boltmann's equation for a Maxwellian gas, J. Combinatorial Theory, 2 (1967), 358-382.       
21 E. Miot, M. Pulvirenti and C. Saffirio, On the Kac model for the Landau equation, Kinet. Relat. Models, 4 (2011), 333-344.       
22 S. Mischler and C. Mouhot, Kac's program in kinetic theory, Inv. Math., 193 (2013), 1-147.       
23 S. Mischler, C. Mouhot and B. Wennberg, A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, Probab. Theory Related Fields, 161 (2015), 1-59.       
24 D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, vol. 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1979.       
25 A.-S. Sznitman, Topics in propagation of chaos, in École d'Été de Probabilités de Saint-Flour XIX-1989, vol. 1464 of Lecture Notes in Math., Springer, Berlin, 1991, 165-251.       
26 H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. Verw. Gebiete, 46 (1978/79), 67-105.       
27 G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J. Statist. Phys., 94 (1999), 619-637.       
28 C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.       
29 C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983.       
30 C. Villani, Decrease of the Fisher information for solutions of the spatially homogeneous Landau equation with Maxwellian molecules, Math. Mod. Meth. Appl. Sci., 10 (2000), 153-161.       
31 C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid dynamics, North-Holland, Amsterdam, 1 (2002), 71-305.       
32 C. Villani, Optimal Transport, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, Old and new.       

Go to top