Flows of vector fields with point singularities and the vortexwave system
Pages: 2405  2417,
Issue 5,
May
2016
doi:10.3934/dcds.2016.36.2405 Abstract
References
Full text (412.9K)
Related Articles
Gianluca Crippa  Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel, Switzerland (email)
Milton C. Lopes Filho  Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária  Ilha do Fundão, Caixa Postal 68530, 21941909 Rio de Janeiro, RJ, Brazil (email)
Evelyne Miot  Ecole Polytechnique, Centre de Mathématiques Laurent Schwartz, 91128 Palaiseau, France (email)
Helena J. Nussenzveig Lopes  Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária  Ilha do Fundão, Caixa Postal 68530, 21941909 Rio de Janeiro, RJ, Brazil (email)
1 
L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227260. 

2 
L. Ambrosio, Transport equation and Cauchy problem for nonsmooth vector fields, in Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Math., 1927, Springer, Berlin, 2008, 141. 

3 
L. Ambrosio and G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, in Transport Equations and MultiD Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana, 5, Springer, Berlin, 2008, 357. 

4 
L. Ambrosio and G. Crippa, Continuity equations and ODE flows with nonsmooth velocity, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 11911244. 

5 
F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyper. Differential Equations, 10 (2013), 235282. 

6 
S. Caprino, C. Marchioro, E. Miot and M. Pulvirenti, On the attractive plasmacharge system in 2d, Comm. Partial Differential Equations, 37 (2012), 12371272. 

7 
G. Crippa and C. De Lellis, Estimates and regularity results for the DiPernaLions flow, J. Reine Angew. Math., 616 (2008), 1546. 

8 
R. J. DiPerna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511547. 

9 
D. Jin and D. Dubin, Point vortex dynamics within a background vorticity patch, Phys. Fluids, 13 (2001), 677691. 

10 
M. C. Lopes Filho, E. Miot and H. J. Nussenzveig Lopes, Existence of a weak solution in $L^p$ to the vortexwave system, J. Nonlinear Science, 21 (2011), 685703. 

11 
M. C. Lopes Filho and H. J. Nussenzveig Lopes, An extension of Marchioro's bound on the growth of a vortex patch to flows with $L^p$ vorticity, SIAM J. Math. Anal., 29 (1998), 596599 (electronic). 

12 
C. Lacave and E. Miot, Uniqueness for the vortexwave system when the vorticity is constant near the point vortex, SIAM J. Math. Anal., 41 (2009), 11381163. 

13 
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, {27}, Cambridge University Press, Cambridge, 2002. 

14 
C. Marchioro and M. Pulvirenti, On the vortexwave system, in Mechanics, Analysis, and Geometry: 200 Years after Lagrange, Elsevier Science, Amsterdam, 1991, 7995. 

15 
C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, SpringerVerlag, New York, 1994. 

16 
P. Newton, The Nvortex problem on a sphere: Geophysical mechanisms that break integrability, Theor. Comput. Fluid Dyn., 24 (2010), 137149. 

17 
D. Schecter, Twodimensional vortex dynamics with background vorticity, in CP606, NonNeutral Plasma Physics IV, Vol. 606, American Institute of Physics, 2002, 443452. 

18 
D. Schecter and D. Dubin, Theory and simulations of twodimensional vortex motion driven by a background vorticity gradient, Phys. Fluids, 13 (2001), 17041723. 

19 
E. Stein, Harmonic Analysis, Princeton University Press, 1993. 

Go to top
