The Journal of Geometric Mechanics (JGM)

Invariant metrics on Lie groups
Pages: 517 - 526, Issue 4, December 2015

doi:10.3934/jgm.2015.7.517      Abstract        References        Full text (369.5K)           Related Articles

Gerard Thompson - The University of Toledo, 2801 W Bancroft St., Toledo, OH 43606, United States (email)

1 M. Anderson, A survey of Einstein Metrics on 4-Dimensional Manifolds, Handbook of Geometric Analysis, 3, International Press, Boston, 2010.
2 T. Arias-Marco and O. Kowalski, Classification of 4-dimensional homogeneous weakly Einstein manifolds, Czechoslovak Math. J., 65 (2015), 21-59.       
3 A. Besse, Einstein Manifolds, 1st ed., Springer, Berlin, Heidelberg, New York, 1987.       
4 S. Chen and K. Liang, Left-invariant pseudo-Einstein metrics on Lie groups, J. Nonlinear Math. Phys., 19 (2012), 1250015, 11pp.       
5 Z. Chen, D. Hou and C. Bai, A left-symmetric algebraic approach to left invariant flat pseudo-metrics on Lie groups, J. Geom. Phys., 62 (2012), 1600-1610.       
6 P. Gadea, J. González-Dávila and J. Oubina, Cyclic metric Lie groups, Monatsh. Math., 176 (2015), 219-239.       
7 M. Guediri, Novikov algebras carrying an invariant Lorentzian symmetric bilinear form, J. Geom. Phys., 82 (2014), 132-144.       
8 F. Hindeleh and G. Thompson, Killing's equations for invariant metrics on Lie groups, Journal of Geometry and Mechanics, 3 (2011), 323-335.       
9 H. Kodama, A. Takahara and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscripta Math., 135 (2011), 229-243.       
10 J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329.       
11 J. Patera, R. T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Phys., 17 (1976), 986-994.       
12 H. Wang and S. Deng, Left invariant Einstein-Randers metrics on compact Lie groups, Canad. Math. Bull., 55 (2012), 870-881.       

Go to top