`a`
Journal of Modern Dynamics (JMD)
 

There exists an interval exchange with a non-ergodic generic measure
Pages: 289 - 304, Volume 9, 2015

doi:10.3934/jmd.2015.9.289      Abstract        References        Full text (205.0K)           Related Articles

Jon Chaika - Department of Mathematics, University of Utah, 155 S. 1400 E., Room 233, Salt Lake City, UT 84112, United States (email)
Howard Masur - Department of Mathematics, University of Chicago, 5734 S. University Avenue, Room 208C, Chicago, IL 60637, United States (email)

1 A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.       
2 V. Cyr and B. Kra, Counting generic measures for a subshift of linear growth, arXiv:1505.02748.
3 A. B. Katok, Invariant measures of flows on orientable surfaces, Dokl. Akad. Nauk SSSR, 211 (1973), 775-778.       
4 M. Keane, Interval exchange trasformations, Math. Z., 141 (1975), 25-31.       
5 M. Keane, Non-ergodic interval exchange transformations, Israel J. Math., 26 (1977), 188-196.       
6 S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc., 18 (2005), 823-872.       
7 H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200.       
8 E. A. Sataev, The number of invariant measures for flows on orientable surfaces, Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 860-878.       
9 M. Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut., 19 (2006), 7-100.       
10 W. Veech, A Kronecker-Weyl theorem modulo 2, Proc. Nat. Acad. Sci. U.S.A., 60 (1968), 1163-1164.       
11 W. Veech, Interval exchange transformations, J. Analyse Math., 33 (1978), 222-272.       
12 W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.       
13 J.-C. Yoccoz, Interval exchange maps and translation surfaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010, 1-69.       

Go to top