Adaptive projective synchronization of memristive neural networks with timevarying delays and stochastic perturbation
Pages: 827  844,
Issue 4,
December
2015
doi:10.3934/mcrf.2015.5.827 Abstract
References
Full text (983.4K)
Related Articles
Ruoxia Li  Department of Mathematics and Research Center for Complex Systems and Network Sciences, Southeast University, 210096, Nanjing, China (email)
Huaiqin Wu  Department of Applied Mathematics, Yanshan University, 066001, Qinhuangdao, China (email)
Xiaowei Zhang  Department of Applied Mathematics, Yanshan University, 066001, Qinhuangdao, China (email)
Rong Yao  Department of Applied Mathematics, Yanshan University, 066001, Qinhuangdao, China (email)
1 
J. Aubin and H. Frankowska, Setvalued Analysis, BirkhĂ¤user, Boston, 1990. 

2 
S. Bowong, F. M. Moukam Kakmeni and H. Fotsin, A new adaptive observerbased synchronization scheme for private communication, Physics Letters A, 355 (2006), 193201. 

3 
L. Chua, Memristorthe missing circut element, IEEE Trans, Circuit Theory, 18 (1971), 507519. 

4 
T. Driscoll, J. Quinn, S. Klein, H. T. Kim, B. J. Kim, Y. V. Pershin, M. DiVentra and D. N. Basov, Memristive adaptive filters, Appl. Phys. Lett., 97 (2010), 093502. 

5 
A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1976. 

6 
L. Hu, H. J. Gao and W. X. Zheng, Novel stability of cellular neural networks with interval timevarying delay, Neural Networks, 21 (2008), 14581463. 

7 
X. Mao, A note on the LaSalletype theorems for stochastic differential delay equations, Journal of Mathematical Analysis and Applications, 268 (2002), 125142. 

8 
L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, 64 (1990), 821824. 

9 
Y. V. Pershin, S. La Fontaine and M. Di Ventra, Memristive model of amoeba learning, preprint, 2009. 

10 
Y. V. Pershin and M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks, Neural Networks, 23 (2010), 881886. 

11 
Y. Shen and J. Wang, An improved algebraic criterion for global exponential stability of recurrent neural networks with timevarying delays, Neural Networks, 19 (2008), 528531. 

12 
D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found, Nature, 453 (2008), 8083. 

13 
S. Sundar and A. Minai, Synchronization of randomly multiplexed chaotic systems with application to communication, Physical Review Letters, 85 (2000), 54565459. 

14 
J. M. Tour and T. He. Electronics, Electronics: The fourth element, Nature, 453 (2008), 4243. 

15 
A. H. Wan, J. G. Peng and M. S. Wang, Exponential stability of a class of generalized neural networks with timevarying delays, Neurocomputing, 69 (2006), 959963. 

16 
R. L. Wang, Z. Tang and Q. P. Cao, A learning method in Hopfield neural network for combinatorial optimization problem, Neurocomputing, 48 (2002), 10211024. 

17 
S. P. Wen, Z. G. Zeng and T. W. Huang, Adaptive synchronization of memristorbased Chua's circuits, Physics Letters A, 376 (2012), 27752780. 

18 
S. P. Wen, Z. G. Zeng and T. W. Huang, Dynamic behaviors of memristorbased delayed recurrent networks, Neural Computing and Applications, 23 (2013), 815821. 

19 
A. L. Wu, S. P. Wen and Z. G. Zeng, Exponential synchronization of memristorbased recurrent neural networks with time delays, Neurocomputing, 74 (2011), 30433050. 

20 
A. L. Wu, S. P. Wen and Z. G. Zeng, Synchronization control of a class of memristorbased recurrent neural networks, Information Sciences, 183 (2012), 106116. 

21 
A. L. Wu and Z. G. Zeng, Antisynchronization control of a class of memristive recurrent neural networks, Communications in Nonlinear Science and Numerical, 18 (2013), 373385. 

22 
S. Y. Xu, Y. M. Chu and J. W. Lu, New results on global exponential stability of recurrent neural networks with timevarying delays, Physics. Letters. A, 352 (2006), 371379. 

23 
G. D. Zhang and Y. Shen, Global exponential periodicity and stability of a class of memristorbased recurrent neural networks with multiple delays, Information Sciences, 232 (2013), 386396. 

24 
H. G. Zhang and G. Wang, New criteria of global exponential stability for a class of generalized neural networks with timevarying delays, Neurocomputing, 70 (2007), 24862494. 

25 
L. Zhang, Y. Zhang and J. L. Yu, Multiperiodicity and attractivity of delayed recurrent neural networks with unsaturating piecewise linear transfer functions, Neural Networks, 19 (2008), 158167. 

26 
L. Zhang and Y. Zhang, Selectable and unselectable sets of neurons in recurrent neural networks with saturated piecewise linear transfer function, Neural Networks, 22 (2011), 10211031. 

27 
L. Zhang, Y. Zhang, S. L. Zhang and P. A. Heng, Activity invariant sets and exponentially stable attractors of linear threshold discretetime recurrent neural networks, Automatic Control, 54 (2009), 13411347. 

28 
D. M. Zhou and J. D. Cao, Globally exponential stability conditions for cellular neural networks with timevarying delays, Applied Mathematics and Computation, 131 (2002), 487496. 

Go to top
