`a`
Mathematical Control and Related Fields (MCRF)
 

Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation
Pages: 827 - 844, Issue 4, December 2015

doi:10.3934/mcrf.2015.5.827      Abstract        References        Full text (983.4K)           Related Articles

Ruoxia Li - Department of Mathematics and Research Center for Complex Systems and Network Sciences, Southeast University, 210096, Nanjing, China (email)
Huaiqin Wu - Department of Applied Mathematics, Yanshan University, 066001, Qinhuangdao, China (email)
Xiaowei Zhang - Department of Applied Mathematics, Yanshan University, 066001, Qinhuangdao, China (email)
Rong Yao - Department of Applied Mathematics, Yanshan University, 066001, Qinhuangdao, China (email)

1 J. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Boston, 1990.
2 S. Bowong, F. M. Moukam Kakmeni and H. Fotsin, A new adaptive observer-based synchronization scheme for private communication, Physics Letters A, 355 (2006), 193-201.
3 L. Chua, Memristor-the missing circut element, IEEE Trans, Circuit Theory, 18 (1971), 507-519.
4 T. Driscoll, J. Quinn, S. Klein, H. T. Kim, B. J. Kim, Y. V. Pershin, M. DiVentra and D. N. Basov, Memristive adaptive filters, Appl. Phys. Lett., 97 (2010), 093502.
5 A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1976.
6 L. Hu, H. J. Gao and W. X. Zheng, Novel stability of cellular neural networks with interval time-varying delay, Neural Networks, 21 (2008), 1458-1463.
7 X. Mao, A note on the LaSalle-type theorems for stochastic differential delay equations, Journal of Mathematical Analysis and Applications, 268 (2002), 125-142.
8 L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, 64 (1990), 821-824.
9 Y. V. Pershin, S. La Fontaine and M. Di Ventra, Memristive model of amoeba learning, preprint, 2009.
10 Y. V. Pershin and M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks, Neural Networks, 23 (2010), 881-886.
11 Y. Shen and J. Wang, An improved algebraic criterion for global exponential stability of recurrent neural networks with time-varying delays, Neural Networks, 19 (2008), 528-531.
12 D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found, Nature, 453 (2008), 80-83.
13 S. Sundar and A. Minai, Synchronization of randomly multiplexed chaotic systems with application to communication, Physical Review Letters, 85 (2000), 5456-5459.
14 J. M. Tour and T. He. Electronics, Electronics: The fourth element, Nature, 453 (2008), 42-43.
15 A. H. Wan, J. G. Peng and M. S. Wang, Exponential stability of a class of generalized neural networks with time-varying delays, Neurocomputing, 69 (2006), 959-963.
16 R. L. Wang, Z. Tang and Q. P. Cao, A learning method in Hopfield neural network for combinatorial optimization problem, Neurocomputing, 48 (2002), 1021-1024.
17 S. P. Wen, Z. G. Zeng and T. W. Huang, Adaptive synchronization of memristor-based Chua's circuits, Physics Letters A, 376 (2012), 2775-2780.
18 S. P. Wen, Z. G. Zeng and T. W. Huang, Dynamic behaviors of memristor-based delayed recurrent networks, Neural Computing and Applications, 23 (2013), 815-821.
19 A. L. Wu, S. P. Wen and Z. G. Zeng, Exponential synchronization of memristor-based recurrent neural networks with time delays, Neurocomputing, 74 (2011), 3043-3050.
20 A. L. Wu, S. P. Wen and Z. G. Zeng, Synchronization control of a class of memristor-based recurrent neural networks, Information Sciences, 183 (2012), 106-116.
21 A. L. Wu and Z. G. Zeng, Anti-synchronization control of a class of memristive recurrent neural networks, Communications in Nonlinear Science and Numerical, 18 (2013), 373-385.
22 S. Y. Xu, Y. M. Chu and J. W. Lu, New results on global exponential stability of recurrent neural networks with time-varying delays, Physics. Letters. A, 352 (2006), 371-379.
23 G. D. Zhang and Y. Shen, Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays, Information Sciences, 232 (2013), 386-396.
24 H. G. Zhang and G. Wang, New criteria of global exponential stability for a class of generalized neural networks with time-varying delays, Neurocomputing, 70 (2007), 2486-2494.
25 L. Zhang, Y. Zhang and J. L. Yu, Multiperiodicity and attractivity of delayed recurrent neural networks with unsaturating piecewise linear transfer functions, Neural Networks, 19 (2008), 158-167.
26 L. Zhang and Y. Zhang, Selectable and unselectable sets of neurons in recurrent neural networks with saturated piecewise linear transfer function, Neural Networks, 22 (2011), 1021-1031.
27 L. Zhang, Y. Zhang, S. L. Zhang and P. A. Heng, Activity invariant sets and exponentially stable attractors of linear threshold discrete-time recurrent neural networks, Automatic Control, 54 (2009), 1341-1347.
28 D. M. Zhou and J. D. Cao, Globally exponential stability conditions for cellular neural networks with time-varying delays, Applied Mathematics and Computation, 131 (2002), 487-496.

Go to top