`a`
Mathematical Biosciences and Engineering (MBE)
 

A note on dynamics of an age-of-infection cholera model
Pages: 227 - 247, Issue 1, February 2016

doi:10.3934/mbe.2016.13.227      Abstract        References        Full text (440.9K)           Related Articles

Jinliang Wang - School of Mathematical Science, Heilongjiang University, Harbin 150080, China (email)
Ran Zhang - School of Mathematical Science, Heilongjiang University, Harbin 150080, China (email)
Toshikazu Kuniya - Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan (email)

1 F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10 (2013), 1335-1349.       
2 J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, RI, 1988.       
3 G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25-38.       
4 P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.       
5 C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.       
6 H. L. Smith, Mathematics in Population Biology, Princeton University Press, 2003.       
7 H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc., Providence, RI, 2011.       
8 J. A. Walker, Dynamical Systems and Evolution Equations, Plenum Press, New York and London, 1980.       
9 J. Wang, R. Zhang and T. Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, J. Biol. Dyna., 9 (2015), 73-101.
10 J. Wang, R. Zhang and T. Kuniya, Mathematical analysis for an age-structured HIV infection model with saturation infection rate, Electron. J. Diff. Equ., 2015 (2015), 1-19.       
11 J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015), 289-313.       
12 G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York and Basel, 1985.       
13 J. Yang, Z. Qiu and X. Li, Global stability of an age-structured cholera model, Math. Biosci. Eng., 11 (2014), 641-665.       

Go to top