`a`
Mathematical Biosciences and Engineering (MBE)
 

A physiologically-based pharmacokinetic model for the antibiotic ertapenem
Pages: 119 - 133, Issue 1, February 2016

doi:10.3934/mbe.2016.13.119      Abstract        References        Full text (482.6K)           Related Articles

Michele L. Joyner - Department of Mathematics & Statistics, East Tennessee State University, Johnson City, TN, 37614, United States (email)
Cammey C. Manning - Department of Mathematics and Computer Science, Meredith College, Raleigh, NC, 27607, United States (email)
Whitney Forbes - Department of Mathematics & Statistics, East Tennessee State University, Johnson City, TN, 37614, United States (email)
Michelle Maiden - Department of Mathematics & Computer Science, Meredith College, Raleigh, NC, 27607, United States (email)
Ariel N. Nikas - Department of Mathematics & Computer Science, Meredith College, Raleigh, NC, 27607, United States (email)

1 H. T. Banks, S. Hu and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, CRC Press, Boca Raton, Fl, 2014.       
2 G. Bellu, M. P. Saccomani, S. Audoly and L. D'Angio, Daisy: A new software tool to test global identifiability of biological and physiological systems, Comput. Meth. Prog. Bio., 88 (2007), 52-61.
3 H. J. Clewell III, M. B. Reddy, T. Lave and M. E. Andersen, Physiologically based pharmacokinetic modeling, in Preclinical Development Handbook: ADME Biopharmaceutical Properties (ed. S. C. Gad), Wiley-Interscience, John Wiley & Sons, Inc., 2008, 1167-1127.
4 C. Cobelli and J. J. DiStefano, Parameter and structural identifiability concepts and ambiguities: A critical review and analysis, Am. J. Physiol. - Reg. I., 239 (1980), R7-R24.
5 G. de Simone, R. B. Devereux, S. R. Daniels, G. Mureddu, M. J. Roman, T. R. Kimball, R. Greco, S. Witt and F. Contaldo, Stroke volume and cardiac output in normotensive children and adults: assessment of relations with body size and impact of overweight, Circulation, 95 (1997), 1837-1843.
6 N. C. for Biotechnology Information, Ertapenem, http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=150610#x27.
7 D. Frasca, S. Marchand, F. Petitpas, C. Dahyot-Fizelier, W. Couet and O. Mimoz, Pharmacokinetics of ertapenem following intravenous and subcutaneous infusions in patients, Antimicrob. Agents Chemother., 54 (2010), 924-926.
8 P. C. Fuchs, A. L. Barry and S. D. Brown, In vitro activities of ertapenem (mk-0826) against clinical bacterial isolates from 11 north american medical centers, Antimicrob. Agents Ch., 45 (2001), 1915-1918.
9 ILSI, Physiological Parameter Values for PBPK Models, International Life Sciences Institute, Risk Sciences Institute, 1994.
10 M. C. Inc., Highlights of prescribing information, Invanz® (ertapenem for injection), 2012.
11 W. Jusko, Pharmacokinetics of capacity-limited systems, Journal of Clinical Pharmacology, 29 (1989), 488-493.
12 G. M. Keating and C. M. Perry, Ertapenem: A review of its use in the treatment of bacterial infections, Drugs, 65 (2005), 2151-2178.
13 H. Kvist, B. Chowdhury, U. Grangård, U. Tylen and L. Sjöström, Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations., Am. J. Clin. Nutr., 48 (1988), 1351-1361.
14 D. M. Livermore, A. M. Sefton and G. M. Scott, Properties and potential of ertapenem, J. Antimicrob. Chemoth., 52 (2003), 331-344.
15 A. K. Majumdar, D. G. Musson, K. L. Birk, C. J. Kitchen, S. Holland, J. McCrea, G. Mistry, M. Hesney, L. Xi, S. X. Li, R. Haesen, R. A. Blum, R. L. Lins, H. Greenberg, S. Waldman, P. Deutsch and J. D. Rogers, Pharmacokinetics of ertapenem in healthy young volunteers, American Society for Microbiology, 46 (2002), 3506-3511.
16 MATLAB, version 7.13.0.564 (R2011b), The MathWorks Inc., Natick, Massachusetts, 2011.
17 D. Nix, A. Majumdar and M. DiNubile, Pharmacokinetics and pharmacodynamics of ertapenem: An overview for clinicians, J. Antimicrob. Chemoth., 53 (2004), ii23-ii28.
18 S. Pilari and W. Huisinga, Lumping of physiologically-based pharmacokinetic models and a mechanistic derivation of classical compartmental models, J. Pharmacokinet. Phar., 37 (2010), 365-405.
19 D. Plowchalk and J. Teeguarden, Development of a physiologically based pharmacokinetic model for estradiol in rats and humans: A biologically motivated quantitative framework for evaluating responses to estradiol and other endocrine-active compounds, Toxicol. Sci., 69 (2002), 60-78.
20 P. Poulin and K. Krishnan, An algorithm for predicting tissue:blood partition coefficients of organic chemicals from n-octanol:water partition coefficient data, J. Toxicol. Env. Health, 46 (1995), 117-129.
21 P. Poulin and K. Krishnan, A biologically-based algorithm for predicting human tissue: Blood partition coefficients of organic chemicals, Human and Experimental Toxicology, 14 (1995), 273-280.
22 P. Price, R. Conolly, C. Chaisson, E. Gross, J. Young, E. Mathis and D. Tedder, Modeling interindividual variation in physiological factors used in PBPK models of humans, Crit. Rev. Toxicol., 33 (2003), 469-503.
23 P. M. Shah and R. D. Isaacs, Ertapenem, the first of a new group of carbapenems, J. Antimicrob. Chemoth., 52 (2003), 538-542.
24 B. Tummers, Datathief iii, http://datathief.org/.
25 J. Verbraecken, P. van de Heyning, W. de Backer and L. van Gaal, Body surface area in normal-weight, overweight, and obese adults: A comparison study, Metabolis., 55 (2006), 515-524.

Go to top