Mathematical Biosciences and Engineering (MBE)

Discrete or distributed delay? Effects on stability of population growth
Pages: 19 - 41, Issue 1, February 2016

doi:10.3934/mbe.2016.13.19      Abstract        References        Full text (531.4K)           Related Articles

Edoardo Beretta - CIMAB, University of Milano, via C. Saldini 50, I20133 Milano, Italy (email)
Dimitri Breda - Department of Mathematics and Computer Science, University of Udine, via delle Scienze 206, I33100 Udine, Italy (email)

1 E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.       
2 D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482-495.       
3 D. Breda, S. Maset and R. Vermiglio, Stability of Linear Delay Differential Equations - A Numerical Approach with MATLAB, Springer Briefs in Control, Automation and Robotics, Springer, New York, 2015.       
4 K. L. Cooke, P. van der Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332-352.       
5 M. Hazewinkel, Encyclopedia of Mathematics, Springer, 2001.
6 Z. Jiang and W. Zhang, Bifurcation analysis in single-species population model with delay, Sci. China Math., 53 (2010), 1475-1481.       
7 H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, no. 57 in Texts in Applied Mathematics, Springer, New York, 2011.       
8 J. Wei and X. Zou, Bifurcation analysis of a population model and the resulting {SIS} epidemic model with delay, J. Comput. Appl. Math., 197 (2006), 169-187.       

Go to top