Networks and Heterogeneous Media (NHM)

Modeling opinion dynamics: How the network enhances consensus
Pages: 877 - 896, Issue 4, December 2015

doi:10.3934/nhm.2015.10.877      Abstract        References        Full text (2820.9K)           Related Articles

Marina Dolfin - Dep. of Civil, Computer, Construction, Environmental Engineering and of Applied Mathematics (DICIEAMA), University of Messina, Contrada Di Dio Vill. S. Agata, Messina, Italy (email)
Mirosław Lachowicz - Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland (email)

1 D. Acemoglu and J. A. Robinson, Economic Backwardness in Political Perspective, Am. Pol. Sci. Rev., 100 (2006), 115-131.
2 G. Ajmone Marsan, N. Bellomo and A. Tosin, Complex Systems and Society: Modeling and Simulation, Springer Briefs in Mathematics, Springer-Verlag, New York, 2013.       
3 J. Banasiak and M. Lachowicz, On a macroscopic limit of a kinetic model of alignment, Math. Models Methods Appl. Sci., 23 (2013), 2647-2670.       
4 J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birkhäuser, 2014.       
5 N. Bellomo, F. Colasuonno, D. Knopoff and J. Soler, From systems theory of sociology to modeling the onset and evolution of criminality, NHM, 10 (2015), 421-441.
6 N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflicts looking for the Black Swan, Kinet. Relat. Models, 6 (2013), 459-479.       
7 N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "complexity", and mathematical sciences, Math. Models Methods Appl. Sci., 23 (2013), 1861-1913.       
8 M. L. Bertotti and M. Delitala, Conservation laws and asymptotic behavior of a model of social dynamics, Nonlinear Anal. Real World Appl., 9 (2008), 183-196.       
9 M. L. Bertotti and M. Delitala, Cluster formation in opinion dynamics: A qualitative analysis, ZAMP, 61 (2010), 583-602.       
10 J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, Kinetic, and Hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, (G. Naldi, L. Pareschi, and G. Toscani) Birkhäuser, (2010), 297-336.       
11 V. Comincioli, L. Della Croce and G. Toscani, A Boltzmann-like equation for choice formation, Kinet. Relat. Models, 2 (2009), 135-149.       
12 S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. of Statist.l Phys., 120 (2005), 253-277.       
13 G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Adv. Complex Syst., 3 (2000), 87-98.
14 M. Dolfin and M. Lachowicz, Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions, Math. Models . Methods Appl. Sci., 24 (2014), 2361-2381.       
15 M. Dolfin, M. Lachowicz and Z. Szymanska, A general framework for multiscale modeling of tumor - immune system interactions, in Mathematical Oncology 2013 - Modeling and simulation in science, engineering and technology, (A. d'Onofrio, A. Gandolfi) Birkhäuser, (2014), 151-180.       
16 M. Dolfin, L. Leonida, D. Maimone Ansaldo Patti and P. Navarra, Escaping the trap of blocking: A kinetic model linking economic development and political perspectives, work in progress.
17 I. Down and C. J. Wilson, From "Permissive Consensus" to "Constraining Dissensus": A Polarizing Union?, Acta Politica, 43 (2008), 26-49.
18 B. During, D. Matthes and G. Toscani, Kinetic equations modelling Wealth Redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103, 12pp.       
19 D. Knopoff, On a mathematical theory of complex systems on networks with application to opinion formation, Math. Models Methods Appl. Sci., 24 (2014), 405-426.       
20 M. Lachowicz, Individually-based Markov processes modeling nonlinear systems in mathematical biology, Nonlinear Anal. Real World Appl., 12 (2011), 2396-2407.       
21 S. Motsch and E. Tadmor, Heterophilius dynamics enhances consensus, SIAM Rev., 56 (2014), 577-621.       
22 L. Pareschi and G. Toscani, Interacting Multiagent Systems - Kinetic equations and Monte Carlo methods, Oxford Univ. Press, Oxford, 2014.
23 R. Rudnicki and P. Zwoleński, Model of phenotypic evolution in hermaphroditic population, J. Math. Biol., 70 (2015), 1295-1321.       
24 H. A. Simon, Models of Bounded Rationality: Economic Analysis and Public Policy, MIT Press, Cambridge, MA, 1982.
25 G. Toscani, Kinetic models of opinion formation, Comm. Math. Sci., 4 (2006), 481-496.       
26 G. Weisbuch and D. Stauffer, Adjustment and social choice, Physica A, 323 (2003), 651-662.       
27 G. Weisbuch, G. Deffuant, F. Amblard and J. P. Nadal, Meet, discuss and segregate!, Complexity, 7 (2002), 55-63.

Go to top