Modeling opinion dynamics: How the network enhances consensus
Pages: 877  896,
Issue 4,
December
2015
doi:10.3934/nhm.2015.10.877 Abstract
References
Full text (2820.9K)
Related Articles
Marina Dolfin  Dep. of Civil, Computer, Construction, Environmental Engineering and of Applied Mathematics (DICIEAMA), University of Messina, Contrada Di Dio Vill. S. Agata, Messina, Italy (email)
Mirosław Lachowicz  Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02097 Warszawa, Poland (email)
1 
D. Acemoglu and J. A. Robinson, Economic Backwardness in Political Perspective, Am. Pol. Sci. Rev., 100 (2006), 115131. 

2 
G. Ajmone Marsan, N. Bellomo and A. Tosin, Complex Systems and Society: Modeling and Simulation, Springer Briefs in Mathematics, SpringerVerlag, New York, 2013. 

3 
J. Banasiak and M. Lachowicz, On a macroscopic limit of a kinetic model of alignment, Math. Models Methods Appl. Sci., 23 (2013), 26472670. 

4 
J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birkhäuser, 2014. 

5 
N. Bellomo, F. Colasuonno, D. Knopoff and J. Soler, From systems theory of sociology to modeling the onset and evolution of criminality, NHM, 10 (2015), 421441. 

6 
N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflicts looking for the Black Swan, Kinet. Relat. Models, 6 (2013), 459479. 

7 
N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "complexity", and mathematical sciences, Math. Models Methods Appl. Sci., 23 (2013), 18611913. 

8 
M. L. Bertotti and M. Delitala, Conservation laws and asymptotic behavior of a model of social dynamics, Nonlinear Anal. Real World Appl., 9 (2008), 183196. 

9 
M. L. Bertotti and M. Delitala, Cluster formation in opinion dynamics: A qualitative analysis, ZAMP, 61 (2010), 583602. 

10 
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, Kinetic, and Hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in SocioEconomic and Life Sciences, (G. Naldi, L. Pareschi, and G. Toscani) Birkhäuser, (2010), 297336. 

11 
V. Comincioli, L. Della Croce and G. Toscani, A Boltzmannlike equation for choice formation, Kinet. Relat. Models, 2 (2009), 135149. 

12 
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. of Statist.l Phys., 120 (2005), 253277. 

13 
G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Adv. Complex Syst., 3 (2000), 8798. 

14 
M. Dolfin and M. Lachowicz, Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions, Math. Models . Methods Appl. Sci., 24 (2014), 23612381. 

15 
M. Dolfin, M. Lachowicz and Z. Szymanska, A general framework for multiscale modeling of tumor  immune system interactions, in Mathematical Oncology 2013  Modeling and simulation in science, engineering and technology, (A. d'Onofrio, A. Gandolfi) Birkhäuser, (2014), 151180. 

16 
M. Dolfin, L. Leonida, D. Maimone Ansaldo Patti and P. Navarra, Escaping the trap of blocking: A kinetic model linking economic development and political perspectives, work in progress. 

17 
I. Down and C. J. Wilson, From "Permissive Consensus" to "Constraining Dissensus": A Polarizing Union?, Acta Politica, 43 (2008), 2649. 

18 
B. During, D. Matthes and G. Toscani, Kinetic equations modelling Wealth Redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103, 12pp. 

19 
D. Knopoff, On a mathematical theory of complex systems on networks with application to opinion formation, Math. Models Methods Appl. Sci., 24 (2014), 405426. 

20 
M. Lachowicz, Individuallybased Markov processes modeling nonlinear systems in mathematical biology, Nonlinear Anal. Real World Appl., 12 (2011), 23962407. 

21 
S. Motsch and E. Tadmor, Heterophilius dynamics enhances consensus, SIAM Rev., 56 (2014), 577621. 

22 
L. Pareschi and G. Toscani, Interacting Multiagent Systems  Kinetic equations and Monte Carlo methods, Oxford Univ. Press, Oxford, 2014. 

23 
R. Rudnicki and P. Zwoleński, Model of phenotypic evolution in hermaphroditic population, J. Math. Biol., 70 (2015), 12951321. 

24 
H. A. Simon, Models of Bounded Rationality: Economic Analysis and Public Policy, MIT Press, Cambridge, MA, 1982. 

25 
G. Toscani, Kinetic models of opinion formation, Comm. Math. Sci., 4 (2006), 481496. 

26 
G. Weisbuch and D. Stauffer, Adjustment and social choice, Physica A, 323 (2003), 651662. 

27 
G. Weisbuch, G. Deffuant, F. Amblard and J. P. Nadal, Meet, discuss and segregate!, Complexity, 7 (2002), 5563. 

Go to top
