Iterative choice of the optimal regularization parameter in TV image restoration
Pages: 1171  1191,
Issue 4,
November
2015
doi:10.3934/ipi.2015.9.1171 Abstract
References
Full text (2108.1K)
Related Articles
Alina Toma  CREATIS, CNRS UMR 5220; INSERM U1044; INSA de Lyon; Université de Lyon 1, Université de Lyon, 69621, Villeurbanne Cedex, France (email)
Bruno Sixou  CREATIS, CNRS UMR 5220; INSERM U1044; INSA de Lyon; Université de Lyon 1, Université de Lyon, 69621, Villeurbanne Cedex, France (email)
Françoise Peyrin  CREATIS, CNRS UMR 5220; INSERM U1044; INSA de Lyon; Université de Lyon 1, Université de Lyon, 69621, Villeurbanne Cedex, France (email)
1 
M. Afonso, J. BioucasDias and M. Figueiredo, Fast image recovery using variable splitting and constrained optimization, IEEE Trans. Image Process., 19 (2010), 23452356. 

2 
M. Afonso, J. BioucasDias and M. Figueiredo, An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems, IEEE Trans. Image Process., 20 (2011), 681695. 

3 
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press Oxford, 2000. 

4 
J. F. Aujol and G. Gilboa, Constrained and SNRbased solutions for TVHibert space image denoising, J. Math. Imaging Vis., 26 (2006), 217237. 

5 
S. D. Babacan, R. Molina and A. K. Katsaggelos, Parameter estimation in TV image restoration using variational distribution approximation, IEEE Trans. Image Process., 17 (2008), 326339. 

6 
S. D. Babacan, R. Molina and A. K. Katsaggelos, Total Variation Super Resolution Using A Variational Approach, Proc. Int.Conf. Image Process., (2008), 641644. 

7 
S. Becker, J. Bobin and E. Candes, NESTA: A fast and accurate firstorder method for sparse recovery, SIAM Journal on Imaging Sciences, 4 (2011), 139. 

8 
T. Blu and F. Luisier, The SURELET approach to image denoising, IEEE Trans. Image Process., 16 (2007), 27782786. 

9 
L. M. Bregman, The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math+, 7 (1967), 200217. 

10 
M. Burger and S. Osher, Convergence rates of convex variational regularization, Inverse Probl., 20 (2004), 14111421. 

11 
C. A. Deledalle, S. Vaiter, J. Fadili and G. Peyre Stein Unbiased Gradient estimator for the risk (SUGAR) for multiple parameter selection, SIAM Journal on Imaging Sciences, 7 (2014), 24482487. 

12 
Y. C. Eldar, Generalized SURE for exponential families: Application to regularization, IEEE Trans. Signal Process., 57 (2009), 471481. 

13 
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996. 

14 
E. Esser, Applications of Lagrangianbased alternating direction methods and connections to split Bregman, CAM report, 2009. 

15 
J. M. Fadili, G. Peyre, S. Vaiter, C. Deledalle and J. Salmon, Stable recovery with analysis decomposable priors, preprint, arXiv:1304.4407. 

16 
K. Frick, D. A. Lorenz and E. Resmerita, Morozov's principle for the augmented Lagrangian method applied to linear inverse problems, Multiscale Model Simul., 9 (2011), 15281548. 

17 
G. H. Golub, M. T. Heath and C. Wahba, Generalized crossvalidation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215223. 

18 
M. Grasmair, Linear convergence rates for Tikhonov regularization with positively homogeneous functionals, Inverse Problems, 27 (2011), 075014, 16pp. 

19 
P. C. Hansen and D. P. O'Leary, The use of the Lcurve in the regularization of discrete illposed problem, SIAM Journal on Scientific Computing, 14 (1993), 14871503. 

20 
M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for laplacian smooting splines, Commun. Stat. Simulat., 19 (1990), 433450. 

21 
K. C. Kiwiel, Proximal minimization methods with generalized Bregman functions, SIAM J. Control Optim., 35 (1997), 11421168. 

22 
K. Kunisch and J. Zou, Iterative choices of regularization parameters in linear inverse problems, Inverse Probl., 14 (1998), 12471264. 

23 
K. Kunisch, On a class of damped Morozov principles, Computing, 50 (1993), 185198. 

24 
H. Liao, F. Li and M. K. Ng, Selection of regularization parameter in total variation restoration, JOSA A, 26 (2009), 23112320. 

25 
Y.Lin, B.Wohlberg and H.Guo, UPRE method for total variation parameter selection, Signal Processing, 90 (2010), 25462551. 

26 
V. A. Morozov, Methods for Solving Incorrectly Posed Problems, SpringerVerlag, New York, 1984. 

27 
M. K. Ng, P. Weiss and X. Yuan, Solving constrained totalvariation image restoration and reconstruction problems via alternating direction methods, SIAM Journal on Scientific Computing, 32 (2010), 27102736. 

28 
S. Ramani, T. Blu and M. Unser, MonteCarlo SURE: A blackbox optimization of regularization parameters for general denoising algorithms, IEEE Trans. Image Process., 17 (2008), 15401554. 

29 
S. Ramani, Z. Liu, J. Rosen, J. Nielsen and J. A. Fessler Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SUREbased methods, IEEE Transactions on Image Processing, 21 (2012), 36593672. 

30 
Z. Ren, C. He and Q. Zhang, Fractional order total variation regularization for image superresolution, Signal Process., 93 (2013), 24082421. 

31 
E. Resmerita, Regularization of illposed problems in Banach spaces: Convergence rates, Inverse Probl., 21 (2005), 13031314. 

32 
L. I. Rudin , S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259268. 

33 
M. Salome, F. Peyrin, P. Cloetens, C. Odet, A. M. LavalJeantet, J. Barucheland and P. Spanne, A synchrotron radiation microtomography system for the analysis of trabecular bone samples, Medical Physics, 26 (1999), 21942204. 

34 
O. Scherzer, M. Grassmair, H. Grossauer, M. Haltmaier and F. Lenzen, Variational Methods in Imaging, Springer Verlag, New York, 2008. 

35 
A. N. Tikhonov and V. Y. Arsenin, Solutions to illposed problems, WinstonWiley, New York, 1977. 

36 
E. Van den Berg E and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing, 31 (2008), 890912. 

37 
S. Vaiter, A. Deledalle, G. Peyre, C. Dossal and J. Fadili, Local behavior of sparse analysis regularization: Applications to risk estimation, Applied and Computational Harmonic Analysis, 35 (2013), 433451. 

38 
C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002. 

39 
C. Vonesch, S. Ramani and M. Unser, Risk estimation for nonlinear image deconvolution with a waveletdomain sparsity constraint, Inverse Problems, 27 (2011), 075014. 

40 
C. Vonesch, S. Ramani and M. Unser, Recursive risk estimation for nonlinear image deconvolution with a waveletdomain sparsity constraint, ICIP 2008, 15th IEEE International Conference on Image Processing, (2008), 665668. 

41 
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248272. 

42 
Y. W. Wen and R. H. Chan, Parameter selection for totalvariationbased image restoration using discrepancy principle, IEEE Trans. Image Process., 21 (2012), 17701781. 

43 
J. Yang, W. Yin, Y. Zhang and Y. Wang, A fast algorithm for edgepreserving variational multichannel image restoration, SIAM Journal on Imaging Sciences, 2 (2009), 569592. 

Go to top
