Time periodic solutions to the threedimensional equations of compressible magnetohydrodynamic flows
Pages: 1847  1868,
Issue 4,
April
2016
doi:10.3934/dcds.2016.36.1847 Abstract
References
Full text (432.1K)
Related Articles
Hong Cai  School of Mathematical Sciences and Fujian Provincial Key Laboratory, on Mathematical Modeling and Scientific Computing, Xiamen University, Fujian, Xiamen, 361005, China (email)
Zhong Tan  School of Mathematical Sciences and Fujian Provincial Key Laboratory, on Mathematical Modeling and Scientific Computing, Xiamen University, Fujian, Xiamen, 361005, China (email)
1 
J. Březina and K. Kagei, Decay properties of solutions to the linearized compressible NavierStokes equation around timeperiodic parallel flow, Math. Models Methods Appl. Sci., 22 (2012), 1250007, 53 pp. 

2 
J. Březina and K. Kagei, Spectral properties of the linearized compressible NavierStokes equation around timeperiodic parallel flow, J. Differential Equations, 255 (2013), 11321195. 

3 
Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations, Nonlinear Anal., 72 (2010), 44384451. 

4 
G. Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344376. 

5 
G. Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamics equations, Z. Angew. Math. Phys., 54 (2003), 608632. 

6 
J. Fan, F. Li, G. Nakamura and Z. Tan, Regularity criteria for the threedimensional magnetohydrodynamic equations, J. Differential Equations, 256 (2014), 28582875. 

7 
J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 36373660. 

8 
J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392409. 

9 
J. Fan and K. Zhao, Global Cauchy problem of $2D$ generalized magnetohydrodynamic equations, J. Math. Anal. Appl., 420 (2014), 10241032. 

10 
E. Feireisl, P. B. Mucha, A. Novotny and M. Pokorny, Timeperiodic solutions to the full NavierStokesFourier system, Arch. Rational Mech. Anal., 204 (2012), 745786. 

11 
D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791804. 

12 
X. Hu and D. Wang, Global existence and largetime behavior of solutions to the threedimensional equations of compressible magnetohydrodynamics flows, Arch. Ration. Mech. Anal., 197 (2010), 203238. 

13 
C. H. Jin and T. Yang, Periodic solutions for a $3D$ compressible NavierStokes equations in a periodic domain, submitted to JDE. 

14 
C. H. Jin and T. Yang, Time periodic solutions to $3D$ compressible NavierStokes system with external force, submitted. 

15 
Y. Kagei and K. Tsuda, Existence and stability of time periodic solution to the compressible NavierStokes equation for time periodic external force with symmetry, J. Differential Equations, 258 (2015), 399444. 

16 
S. Kawashima and M. Okada, Smooth global solutions for the onedimensinal equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384387. 

17 
S. Kawashima, Smooth global solutions for twodimensinal equations of electromagnetofluid dynamics, apan J. Appl. Math., 1 (1984), 207222. 

18 
H. L. Li, X. Y. Xu and J. W. Zhang, Global Classical Solutions to $3D$ Compressible Magnetohydrodynamic Equations with Large Oscillations and Vacuum, SIAM J. Math. Anal., 45 (2013), 13561387. 

19 
H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible NavierStokes equations, J. Differential Equations, 248 (2010), 22752293. 

20 
A. Matsumura and T. Nishida, Periodic solutions of a viscous gas equation, Recent topics in nonlinear PDE, IV (Kyoto, 1988), 160 (1982), 4982. 

21 
E. A. Notte, M. D. Rojas and M. A. Rojas, Periodic strong solutions of the magnetohydrodynamic type equations, Proyecciones, 21 (2002), 199224. 

22 
Z. Tan and H. Q. Wang, Time periodic solutions of compressible magnetohydrodynamic equations, Nonlinear Anal., 76 (2013), 153164. 

23 
A. Valli, Periodic and stationary solutions for compressible NavierStokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607647. 

24 
D. H. Wang, Large solutions to the initialboundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 14241441. 

25 
W. Yan and Y. Li, Existence of periodic flows for compressible Magnetohydrodynamics in $\mathbbT^3$, Submitted. 

26 
Y. F. Yang, X. H. Gu and C. S. Dou, Global wellposedness of strong solutions to the magnetohydrodynamic equations of compressible flows, Nonlinear Anal., 95 (2014), 2337. 

Go to top
