Sharp estimates for fully bubbling solutions of $B_2$ Toda system
Pages: 1759  1788,
Issue 4,
April
2016
doi:10.3934/dcds.2016.36.1759 Abstract
References
Full text (557.2K)
Related Articles
Weiwei Ao  Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada (email)
1 
W. W. Ao, C. S. Lin and J. C. Wei, On Nontopological Solutions of the $A_2$ and $B_2$ ChernSimons System, Memoirs of Amer. Math. Soc., to appear. 

2 
W. W. Ao, C. S. Lin and J. C. Wei, On Nontopological Solutions of the $G_2$ ChernSimons System, Comm. Analysis and Geometry, to appear. 

3 
D. Bartolucci, C. C. Chen, C. S. Lin and G. Tarantello, Profile of blowup solutions to mean field equations with singular data. Comm. Partial Diff. Equ., 29 (2004), 12411265. 

4 
J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward, On conformal minimal immersions of $S^2$ into $CP^n$, Mathematische Annalen, 279 (1988), 599620. 

5 
L. Battaglia, A. Jevnikar, A. Malchiodi and D. Ruiz, A general existence result for the Toda system on compact surfaces, Advances in Mathematics, 285 (2015), 937979, arXiv:1306.5404. 

6 
L. Battaglia and A. Malchiodi, A MoserTrudinger inequality for the singular Toda system, Bull. Inst. Math. Acad. Sin., 9 (2014), 923. 

7 
D. Chae and O. Y. Imanuvilov, The existence of nontopological multivortex solutions in the relativistic selfdual ChernSimons theory, Comm. Math. Phys., 215 (2000), 119142. 

8 
C. C. Chen and C. S. Lin, Sharp estimates for solutions of multibubbles in compact Riemann surfaces, Comm. Pure Appl. Math., 55 (2002), 728771. 

9 
C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 16671727. 

10 
C. C. Chen and C. S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates, Discrete Contin. Dyn. Syst., 28 (2010), 12371272. 

11 
C. C. Chen and C. S. Lin, Mean field equations of Liouville type with the singular data: Topological formula, Comm. Pure Appl. Math., 68 (2015), 887947. 

12 
S. S. Chern and J. G. Wolfson, Maps of the twosphere into a complex Grassmann manifold. II, Annal. Math., 125 (1987), 301335. 

13 
G. Dunne, Mass degeneracies in selfdual models, Phys. Lett. B,345 (1995), 452457. 

14 
G. Dunne, Selfdual ChernSimons Theories, Lect. Note Phys., 36 (1995), BerlinNew York, SpringVerlag. 

15 
G. Dunne, Vacuum mass spectra for $SU(N)$ selfdual ChernSimonsHiggs, Nucl. Phys. B, 433 (1995), 333348. 

16 
A. Doliwa, Holomorphic curves and Toda system, Lett. Math. Phys., 39 (1997), 2132. 

17 
P. Griffiths and J. Harris, Principles of Algebraic Geometry, WileyInterscience, New York, 1978. 

18 
M. A. Guest, Harmonic Maps, Loop Groups, and Integrable Systems, London Mathematical Society Student Texts, vol. 38. Cambridge University Press, Cambridge, 1997. 

19 
J. Jost, C. S. Lin and G. F. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math., 59 (2006), 526558. 

20 
J. Jost and G. F. Wang, Classification of solutions of a Toda system in $\mathbbR^2$, Int. Math. Res. Not., 6 (2002), 277290. 

21 
T. J. Kuo and C. S. Lin, Sharp estimate of solutions to mean field equation with integer singular sources: the first order approximation, preprint, 2013. 

22 
Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421444. 

23 
C. S. Lin and C. L. Wang, Elliptic functions, Green functions and the mean field equations on tori, Annal. Math., 172 (2010), 911954. 

24 
C. S. Lin and J. C. Wei, Sharp estimates for bubbling solutions of a fourth order mean field equation, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 6 (2007), 599630. 

25 
C. S。 Lin and J. C. Wei, Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes, Comm. Pure Appl. Math., 56 (2003), 784809. 

26 
C. S. Lin and S. Yan, Existence of bubbling solutions for ChernSimons model on a torus, Arch. Ration. Mech. Anal., 207 (2013), 353392. 

27 
C. S. Lin and S. Yan, Bubbling solutions for the $SU(3)$ ChernSimon model on a torus, Comm. Pure Appl. Math, 66 (2013), 9911027. 

28 
C. S. Lin and S. Yan, Bubbling solutions for relativistic Abelian ChernSimons model on a torus, Comm. Math. Phys., 297 (2010), 733758. 

29 
C. S. Lin, L. P. Wang and J. C. Wei, Topological degree for solutions of a fourth order mean field equation, Math. Zeit., 268 (2011), 675705. 

30 
C. S. Lin, J. C. Wei and C. Zhao, Sharp estimates for fully bubbling solutions of a $SU(3)$ Toda system, Geom. Funct. Anal., 22 (2012), 15911635. 

31 
C. S. Lin, J. C. Wei and C. Y. Zhao, Asymptotic behavior of $SU(3)$ Toda system in a bounded domain}, Manus. Math., 137 (2012), 118. 

32 
C. S. Lin, J. C. Wei and D. Ye, Classification and nondegeneracy of $SU(n + 1)$ Toda system with singular sources, Invent. Math., 190 (2012), 169207. 

33 
C. S. Lin, J. C. Wei and L. Zhang, Classification of blowup limits for $SU(3)$ Toda singular Toda system, Analysis and PDE, 8 (2015), 807837. 

34 
C. S. Lin, J. C. Wei and L. Zhang, Local profile of fully bubbling solutions to $SU(n+1)$ Toda system, preprint, arXiv:1308.1579 . 

35 
C. S. Lin and L. Zhang, Profile of bubbling solutions to a Liouville system, Annal. Inst. H. Poincar Anal. Non Lineaire, 27 (2010), 117143. 

36 
C. S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field equations, Comm. Pure Appl. Math., 64 (2011), 556590. 

37 
C. S. Lin and L. Zhang, On Liouville systems at critical parameters, part 1: One bubble, J. Funct. Anal., 264 (2013), 25842636. 

38 
A. Malchiodi and D. Ruiz, New improved MoserTrudinger inequalities and singular Liouville equations on compact surfaces, Geom. Funct. Anal., 21 (2011), 11961217. 

39 
A. Malchiodi and D. Ruiz, A variational analysis of the Toda system on compact surfaces, Comm. Pure Appl. Math., 66 (2013), 332371. 

40 
A. Malchiodi and C. B. Ndiaye, Some existence results for the Toda system on closed surfaces, Atti Dell'accademia Pontificia Dei Nuovi Lincei, 18 (2007), 391412. 

41 
M. Nolasco and G. Tarantello, Double vortex condensates in the ChernSimons theory, Cal. Var. Partial Diff. Equ., 9 (1999), 3194. 

42 
M. Nolasco and G. Tarantello, Vortex condensates for the $SU(3)$ ChernSimons theory, Comm. Math. Phys., 213 (2000), 599639. 

43 
F. Robert and J. C. Wei, Asymptotic behavior of a fourth order mean field equation with Dirichlet boundary condition, Indiana University Math. J., 57 (2008), 20392060. 

44 
J. C. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial Diff. Equ., 21 (1996), 14511467. 

45 
Y. S. Yang, The relativistic nonabelian ChernSimons equation, Comm. Math. Phys., 186 (1999), 199218. 

Go to top
