Global existence and blow up of solutions to a class of pseudoparabolic equations with an exponential source
Pages: 2465  2485,
Issue 6,
November
2015
doi:10.3934/cpaa.2015.14.2465 Abstract
References
Full text (475.7K)
Related Articles
Xiaoli Zhu  School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China (email)
Fuyi Li  School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China (email)
Ting Rong  School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China (email)
1 
C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2D wave equation with exponential source, Calc. Var. Partial Differential Equations, 34 (2009), 377411. 

2 
H. Brill, A semilinear Sobolev evolution equation in a Banach space, J. Differential Equations, 24 (1977), 412425. 

3 
Y. Cao, J. Yin and C. Wang, Cauchy problems of semilinear pseudoparabolic equations, J. Differential Equations, 246 (2009), 45684590. 

4 
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, vol. 13 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1998, 

5 
H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudoparabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 44244442. 

6 
D. Colton, Pseudoparabolic equations in one space variable, J. Differential Equations, 12 (1972), 559565. 

7 
D. Colton and J. Wimp, Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperatures, J. Math. Anal. Appl., 69 (1979), 411418. 

8 
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139153. 

9 
E. DiBenedetto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821854. 

10 
F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185207. 

11 
M. O. Korpusov and A. G. Sveshnikov, Blowup of solutions of strongly nonlinear equations of pseudoparabolic type, J. Math. Sci. (N. Y.), 148 (2008), 1142. 

12 
H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=Au+F(u)$, Arch. Rational Mech. Anal., 51 (1973), 371386. 

13 
Y. Liu, R. Xu and T. Yu, Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations, Nonlinear Anal., 68 (2008), 33323348. 

14 
M. Meyvaci, Blow up of solutions of pseudoparabolic equations, J. Math. Anal. Appl., 352 (2009), 629633. 

15 
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 10771092. 

16 
V. Padrón, Effect of aggregation on population revovery modeled by a forwardbackward pseudoparabolic equation, Trans. Amer. Math. Soc., 356 (2004), 27392756 (electronic). 

17 
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273303. 

18 
M. Peszyńska, R. Showalter and S.Y. Yi, Homogenization of a pseudoparabolic system, Appl. Anal., 88 (2009), 12651282. 

19 
W. Rundell, The construction of solutions to pseudoparabolic equations in noncylindrical domains, J. Differential Equations, 27 (1978), 394404. 

20 
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148172. 

21 
N. Seam and G. Vallet, Existence results for nonlinear pseudoparabolic problems, Nonlinear Anal. Real World Appl., 12 (2011), 26252639. 

22 
R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal., 3 (1972), 527543. 

23 
R. E. Showalter, Weak solutions of nonlinear evolution equations of SobolevGalpern type, J. Differential Equations, 11 (1972), 252265. 

24 
R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 126. 

25 
T. W. Ting, Certain nonsteady flows of secondorder fluids, Arch. Rational Mech. Anal., 14 (1963), 126. 

26 
N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473483. 

27 
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser Boston Inc., Boston, MA, 1996. 

28 
R. Xu and J. Su, Global existence and finite time blowup for a class of semilinear pseudoparabolic equations, J. Funct. Anal., 264 (2013), 27322763. 

29 
C. Yang, Y. Cao and S. Zheng, Second critical exponent and life span for pseudoparabolic equation, J. Differential Equations, 253 (2012), 32863303. 

30 
X. Zhu, F. Li and Y. Li, Some sharp result about the global existence and blow up of solutions to a class of pseudoparabolic equations, preprint. 

Go to top
