`a`
Communications on Pure and Applied Analysis (CPAA)
 

Least energy solutions for an elliptic problem involving sublinear term and peaking phenomenon
Pages: 2411 - 2429, Issue 6, November 2015

doi:10.3934/cpaa.2015.14.2411      Abstract        References        Full text (484.6K)           Related Articles

Qiuping Lu - School of Mathematical Science, Yangzhou University, Yangzhou 225002, China, China (email)
Zhi Ling - School of Mathematical Science, Yangzhou University, Yangzhou 225002, China, China (email)

1 A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on $\RR^N$, Progress in Mathematics, 240. Birkhauser Verlag, Basel, 2006.       
2 A. Ambrosetti and P. H. Rabinowitz, Dual variational metheods in critical point theory and applications, J. Funct. Anal., 14 (1973), 341-381.       
3 H. Berestyki and P. L. Lions, Nonlinear scalar field equations I, Arch. Rat. Mech. Anal., 82 (1983), 313-346.
4 J. Byeon, Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity, Trans. Amer. Math. Soc., 362 (2010), 1981-2001.       
5 D. Cao, N. E. Dancer, E. S. Noussair and S. Yan, On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dynam. Systems, 2 (1996), 221-236.       
6 S. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of Euclidean scalar field equation, Comm. Math. Phys., 58 (1978), 211-221.       
7 C. Cortázar, M. Del Pino and M. Elgueta, Uniqueness and stability of regional blow-up in a porous-medium equation, Ann. Inst. H. Poincaré Anal. Non Liné aire, 19 (2002), 927-960.       
8 C. Cortázar, M. Elgueta and P. Felmer, On a semilinear elliptic problem in $\RR^N $ with a non-Lipschitzian non-linearity, Advances in Diff. Eqs., 1 (1996), 199-218.       
9 C. Cortázar, M. Elgueta and P. Felmer, Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation, Comm. Partial Diff. Eqs., 21 (1996), 507-520.       
10 C. Cortázar, M. Elgueta and P. Felmer, Uniqueness of positive solutions of $\Delta u+f(u)=0$ in $\RR^N, N\ge3$, Arch. Rational Mech. Anal., 142 (1998), 127-141.       
11 J. Dávila and M. Montenegro, Concentration for an elliptic equation with singular nonlinearity, J. Math. Pures Appl. (9), 97 (2012), 545-578.       
12 J. Dávila and M. Montenegro, Radial solutions of an elliptic equation with singular nonlinearity, J. Math. Anal. Appl., 352 (2009), 360-379.       
13 E. N. Dancer and S. Santra, Singular perturbed problems in the zero mass case: asymptotic behavior of spikes, Annali di Matematica, 189 (2010), 185-225.       
14 M. Del Pino and P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J., 48 (1999), 883-898.       
15 M. Del Pino, P. Felmer and J. Wei, Multi-peak solutions for some singular perturbation problems, Calc. Var. Partial Differential Equations, 10 (2000), 119-134.       
16 M. Del Pino, P. Felmer and J. Wei, On the role of distance function in some singular perturbation problems, Comm. Partial Differential Equations, 25 (2000), 155-177.       
17 J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Volume I, Elliptic Equations, Research Notes in Mathematics 106, Pitman, 1985.       
18 W.-Y. Ding and W.-M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.       
19 M. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic free-boundary problems, Math. Z., 228 (1998), 683-703.       
20 V. A. Galaktionov, On a blow-up set for the quasilinear heat equation $u_t=(u^{\sigma}u_x)_x+u^{\sigma+1}$, J. Differential Equations, 101 (1993), 66-79.       
21 B. Gidas W.-M. Ni and L. Nirenberg, Symmetry and related properties via the Maximum Principle, Comm. Math. Phys., 68 (1979), 209-243.       
22 B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\RR^N$, Advances in Math. Studies, 7 A (1979), 209-243.
23 D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, New York, 1977.       
24 C. Gui, Symmetry of the blow-up set of a porous medium type equation, Comm. Pure Appl. Math., 48 (1995), 471-500.       
25 L. Jeanjean and K. Tanaka, A remark on the least energy solution in $\RR^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.       
26 H. G. Kaper, M. K. Kwong and Y. Li, Symmetry results for reaction diffusion equations, Diff. Int. Eqs., 6 (1993), 1045-1056.       
27 Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490.       
28 Q. Lu, Multiple solutions with compact support for a semilinear elliptic problem with critical growth, J. Differential Equations, 252 (2012), 6275-6305.       
29 Q. Lu, Locating the peaks of the least energy solutions to an elliptic problem involving sublinear term with Neumann boundary condition, Work in progress.
30 W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.       
31 W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. Journal, 70 (1993), 274-281.       
32 W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.       
33 E.S. Noussair and S. Yan, The effect of the domain geometry in singular perturbation problems, Proc. London Math. Soc. (3), 76 (1998), 427-452.       
34 L. A. Peletier and J. Serrin, Uniqueness of non-negative solutions of semilinear equations in $\RR^N$, J. Diff. Eqs., 61 (1986), 380-397.       
35 P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.       
36 J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 49 (2000), 897-923.       
37 M. Struwe, Variational Methods, Springer-Verlag, 1990.       
38 J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, 129 (1996), 315-333.       

Go to top